

The HoTT Game

The Homotopy Type Theory (HoTT) Game is a project written by mathematicians
for mathematicians interested in HoTT and no experience in proof verification,
with the aim of introducing
cubical agda[#1]
as a tool for trying out mathematics in HoTT.

To get started with the HoTT Game, go to
Getting Started[#2].

This game was created by
Joseph Hua[#3],
Ken Lee[#4],
and Bendit Chan[#5].

[image: doubleCover]

	Getting Started
	The HoTT Game

	Installation

	Emacs and Unicode Commands

	Getting Git on MacOS

	Trinitarianism
	Overview

	Quest 0 - Terms and Types

	Quest 1 - Dependent Types

	Quest 2 - Sigma Types

	Quest 2 - Side Quests

	Quest 3 - Pi Types

	Quest 3 - Side Quests

	Quest 4 - Paths and Equality

	Quest 4 - Side Quests

	Quest 5 - Dependent Paths

	Fundamental Group of the Circle
	Overview

	Quest 0 - Working with the Circle

	Quest 0 - Side Quests

	Quest 1 - Loop Space of the Circle

	Quest 2 - ℤ is a Set

	Quest 3 - The Loop Space is ℤ

Footnotes

[#1]
https://agda.readthedocs.io/en/v2.6.0/language/cubical.html

[#2]
https://thehottgameguide.readthedocs.io/en/latest/getting-started/index.html

[#3]
https://jlh18.github.io/

[#4]
http://kl-i.github.io/

[#5]
https://benditchan.wordpress.com/

Getting Started

	The HoTT Game
	Agdapad

	Installing Agda and the Cubical Agda library

	Where to start?

	How to start?

	Emacs issues

	Special thanks

	Installation
	Overview

	Installing agda

	Installing doom emacs

	Getting agda2-mode or agda-mode support for your text editor

	Check the agda and agda-mode installations

	Getting the cubical library

	Getting The HoTT Game

	Installing with Nix

	Emacs and Unicode Commands
	Agdapad

	Notation

	General Doom Emacs usage

	Agda usage

	Unicode commands

	Getting Git on MacOS
	Check the version

	Get the right version

Footnotes

The HoTT Game

The Homotopy Type Theory (HoTT) Game is a project written by mathematicians
for mathematicians interested in HoTT and no experience in proof verification,
with the aim of introducing
cubical agda[#1]
as a tool for trying out mathematics in HoTT.
This page will help you get the Game working for you.

Agdapad

The HoTT Game can be played entirely in your browser using
Agdapad[#2].
If you want a quick start to the game without installing anything,
you can go straight to the site, create your own agda session, and start playing.

Specifically, once you open an agda session, you should see a welcome page
(which contains useful information).
Around the top left of the screen there is a folder icon.
Click on the folder icon, and open the directory TheHoTTGame.
This contains everything you need for the game.

Many thanks to Ingo Blechschmidt for incorporating the game into Agdapad.

Installing Agda and the Cubical Agda library

A more long-term setup for using agda would be to install it locally.
If you would like detailed instructions on how to install agda and a supportive text editor
then we recommend you follow instructions on Installation.
More general instructions follow:

Our Game is in agda, which can be installed following instructions
on their site[#3].
It is recommended that you use agda in the text editor
emacs[#4],
specifically we recommend
doom emacs[#5],
but it can also work in
atom[#6] and
vs-code[#7].

Once you have emacs and agda, clone the
cubical library repository[#8] (version 0.3)
and make sure agda knows where your copy of the cubical library is
by following instructions on the
library management page[#9].
In short: locate (or create) your libraries file and add a line

the-directory/cubical.agda-lib

to it, where the-directory is the location of cubical.agda-lib on your computer.

Get the HoTT Game by
cloning our repository[#10]
into a folder and then making sure that agda knows where the HoTT Game is
by adding a line

the-directory/TheHoTTGame.agda-lib

to your libraries file as above.

Try opening 1FundamentalGroup/Quest0.agda in Emacs
and do Ctrl-c Ctrl-l.
Some text should be highlighted, and any {!!} should turn into { }.

Where to start?

You can start with trinitarianism if you are interested in
how logic, type theory and category theory come together
as different ways to view the same thing.
If you are more interested in homotopy theory,
try Fundamental Group of the Circle where we show that the
fundamental group of S¹ is ℤ.
We recommend starting with Fundamental Group of the Circle for intuition,
then going to trinitarianism.

How to start?

To start with Fundamental Group of the Circle (for example),
go to Quest 0 - Working with the Circle
and follow the instructions there.
Any agda should happen in Agdapad
or your local copy of the repository.

Emacs issues

If you can’t figure out emacs or forget some command, then
try consulting the Emacs and Unicode Commands page.

Special thanks

We would like to thank Kevin Buzzard for introducing us to formalization,
making the Natural Numbers Game for learning lean
(which inspired this project), and helping the game gain publicity.
We would also like to thank all those involved in the HoTT community
and writing the HoTT book, especially Steve Awodey,
who helped us post about the Game on homotopytypetheory.org.
Lastly we thank all those who are trying out the game and giving us feedback.
If you would like to get involved, simply open and issue and let us know what
you would like to do.

Footnotes

[#1]
https://agda.readthedocs.io/en/v2.6.0/language/cubical.html

[#2]
https://agdapad.quasicoherent.io/

[#3]
https://agda.readthedocs.io/en/latest/getting-started/installation.html

[#4]
https://www.gnu.org/software/emacs/tour/index.html

[#5]
https://github.com/hlissner/doom-emacs

[#6]
https://atom.io/packages/agda-mode

[#7]
https://github.com/banacorn/agda-mode-vscode#agda-language-server

[#8]
https://github.com/agda/cubical

[#9]
https://agda.readthedocs.io/en/latest/tools/package-system.html?highlight=library%20management

[#10]
https://github.com/thehottgame/TheHoTTGame

Installation

Overview

To get things up and running you will need five things

	agda installed on your computer. This is what will check if your code makes sense.
(Automatic if using the Nix installation)

	A text editor, for example doom emacs, atom, vs-code, or vim.
This is an environment for you to edit files in.

	support for agda2-mode or agda-mode in your text editor.
This should do syntax highlighting for your code (pretty colours)
and make sure the text editor has the right shortcuts.

	A clone of the cubical library. (Automatic if using the Nix installation.)

	A clone of the HoTT Game, which is our code.

There are many ways to install agda.
On this page we will try to describe some ways to install it.
There are roughly three ways:

	Using Nix. If you use windows this is probably the easiest and most
rewarding method.
It involves getting the NixOS, a linux operating system inside
your computer, so you also get to try out linux.

	Installing agda and the cubical library yourself

	Using VS-code and getting the agdaLanguageServer

Text editors

Important

No matter the text editor you choose, you will need emacs installed somewhere on your computer,
as agda-mode relies on emacs in the background.

Whilst we will assume you use doom emacs in our guides (since it is the hardest to get used to),
there are other options :

	atom :

Here[#1]
is a set of instructions by Andrew Swan for getting agda working in atom.

	vs-code :
Here[#2]
is a set of instructions for getting agda working in vs-code (scroll down to installation).
You might be able to skip steps 1, 2 and 3 by enabling
agdaMode.connection.agdaLanguageServer in the settings.
(We haven’t tried this - feedback is welcome.)

	vim :
Here[#3]
is a set of instructions for getting agda working in vim.
(We haven’t tried this - feedback is welcome).

Installing agda

Here we give instructions for installing agda on each operating system.
If you have specific advice / issues specific to your operating system then please let us know in
issues[#4].
Another source for information is
official installation guide[#5],
but our advice might be more relevant to you.

Debian and Ubuntu

Ubuntu already should have a version of emacs installed.
If not, go to a terminal and type in

sudo apt-get install emacs

To get agda, go to a terminal and type in

sudo apt install agda-bin

Now you need to set up agda-mode
(is this necessary if you can get agda-mode in emacs? - feedback welcome) :

sudo apt install agda-mode

followed by

agda-mode setup

You can check the version of agda by doing agda --version in the terminal.

MacOS

This will give you both agda and agda-mode at once.

	Open a terminal.

	We will directly clone the agda repo for development version.
First use cd (“change directory”) in the terminal
to navigate to where you want to place the agda library.
Then do the following

git clone https://github.com/agda/agda.git

This gets a copy of the agda repo.

	Go into folder of agda repo then do

cabal update
make install

This will compile agda to make it usable.

	Once process is finished,
you can check agda is installed and its version by doing the following in terminal :

agda --version

This is all you need to get agda and agda-mode, now you just need a text editor.

Windows

We used powershell as the terminal, but others probably work too.

Warning

Always use powershell as admin.

For the prerequisites

	install chocolatey: follow instructions on
their page[#6]

	In (admin) powershell do (via chocolatey, cabal)
- choco install ghc
- choco install cabal
- cabal update
In order to make cabal see ghc,
close and reopen the terminal before doing the next steps.
You might want to also try refreshenv for this.
- cabal install happy
- cabal install alex

Now to install agda, first try using cabal by doing cabal install make
in the terminal. If this works then go with “using cabal”, if not
then try “using stack”

Using ``cabal``
	You should have installed make with cabal install make by this point, if not do so now.

	Directly clone the repo for development version.
You can choose where to put this by navigating to some specific folder in the terminal and doing

git clone https://github.com/agda/agda.git

	It should create a folder called agda (a copy of the github repo). You should do cd agda
to go into that folder, then once you’re in there do

make install

which installs agda using make (it says “run the file called MAKEFILE from the folder”).

	Once installation is finished, try typing agda --version in powershell to check the version.

Using ``stack``
	Get stack using the installer here[#7].

	Run stack upgrade in the terminal

	Doing cabal get Agda in the terminal will create a folder called Agda-2.6.2 where you are at in the terminal.
You can choose where to put this by navigating to some specific folder in the terminal using cd FILENAME.

	Once you have created this Adgda-2.6.2, go into it by doing cd Agda-2.6.2.

	In the folder Agda-2.6.2, there should be a file called stack-9.0.1.yaml.
Now you can try doing stack --stack-yaml stack-9.0.1.yaml install in the terminal (when you’re in the folder Agda-2.6.2)
to run that file.

	Once installation is finished, try typing agda --version to check the version.

In either case we should have agda and agda-mode.
So we should just need to get a text editor.

Installing doom emacs

Here we give instructions for installing doom emacs on each operating system.
If you have specific advice / issues specific to your operating system then please let us know in
issues[#8].

Linux

We have experience difficulties with getting doom on ubuntu specifically,
so you might be better off using one of the other options,
in particular atom appears to work well.
Try installing doom emacs according to
the instructions on their github repository[#9].
A quick guide follows:

	Go to a terminal and type in

git clone --depth 1 https://github.com/hlissner/doom-emacs ~/.emacs.d

~/.emacs.d/bin/doom install

You’ll probably want to answer “yes” to the options unless you know better.
We recommend you add ~/.emacs.d/bin to your PATH
so you can call doom directly and from anywhere;
accomplish this by going to the file ~/.bashrc located in your home directory
(or ~/.zshrc file if you use zsh as your shell)
and adding the line export PATH=$PATH:~/.emacs.d/bin at the end.

This should give you doom emacs.
You might need to restart your computer and or emacs to make sure everything works correctly.

MacOS

Make sure you have the right version of git.

Do the following in a terminal to get doom emacs.

required dependencies
brew install git ripgrep

optional dependencies but install them anyway
brew install coreutils fd

Installs clang. This may take a long time.
xcode-select --install

For fonts
brew install fontconfig

Installs emacs-mac wth sexy icon
brew tap railwaycat/emacsmacport
brew install emacs-mac --with-modules --with-emacs-sexy-icon

Make an app link in Applications
ln -s /usr/local/opt/emacs-mac/Emacs.app /Applications/Emacs.app

doom emacs
git clone https://github.com/hlissner/doom-emacs ~/.emacs.d
~/.emacs.d/bin/doom install

so that you can use 'doom' anywhere
export PATH=”$HOME/.emacs.d/bin:$PATH”

This should give you doom emacs.
You might need to restart your computer and or emacs to make sure everything works correctly.

Windows

NixOS and WSL2

If you came from the NixOS and WSL2 instructions then go to the
linux section.

There are detailed instructions for getting doom emacs on windows
here[#10].

The advice given there for installing fonts might not work.
If it doesn’t work, try installing a font (for example
Iosevka[#11])
by following
these instructions[#12].
Then go to .doom.d/config.el
and add the line (anywhere)

(setq doom-font (font-spec :family "Iosevka SS04" :size 18 :weight 'medium))

Here the font name is Iosevka SS04. You can also change the font size and weight.

Operating system specific issues

If you have specific advice or issues specific to your operating system then please let us know in
issues[#13].

Getting agda2-mode or agda-mode support for your text editor

If you have decided to use doom emacs then you can get agda2-mode inside doom emacs (details below).
For other text editors, you must first install agda-mode,
and then find the relevant ad-on to the text editor to support agda-mode (details below).

Getting agda2-mode on doom emacs

Here we install agda2-mode in Doom Emacs.
Note that this is not agda itself, but syntax highlighting and shortcuts for agda.

	Do the shortcut M-x in doom emacs.
(See Emacs Commands for how to do shortcuts in
doom emacs.)
A window should pop up where you can type things.
Type in :

package-install

Press enter and type in agda2-mode.

	Now do the shortcut SPC f p.
A selection of files should appear.
Type in init.el and hit enter (RET).

	Now you are in init.el. Look for the lang section and uncomment agda.
Save the file and close doom emacs using SPC q q.
(If you came from the Nix installation guide replace agda with (agda +local)
instead.)

	Open terminal. To make the configurations of doom emacs up to date, do

doom sync

If there are no errors, you should have agda2-mode in doom emacs.

Getting agda-mode on atom

	In atom select

	Edit > Preferences (GNU/Linux)

	Atom > Preferences (macOS)

	File > Settings (Windows)

	Select Install from the side menu.

	Type agda into the search box.

	Install the packages agda-mode and language-agda

Check the agda and agda-mode installations

Once you have installed agda, a text editor,
and support for agda-mode in your text editor,
you should test it.

Make a test.agda file anywhere you’d like.

	Open test.agda in doom emacs.

	Type in

open import Agda.Builtin.Nat

	Use C-c C-l to load the file.
An **Agda Information** window should pop up
and if all goes well, there should be nothing in it.

	Use C-c C-d then enter Nat.
The output in the agda info window should be Set.

Congratulations, you now have agda and
can use emacs bindings for agda.
However, you have nothing more than the
builtin types.
So we need to get the library.

Getting the cubical library

The HoTT Game currently requires the cubical-0.3 library.
We walk through an example of an installation of the cubical-0.3 library.
See the
Agda documentation[#14]
for more about libraries.

	Go here[#15].
Under ‘version 0.3’,
download the ‘Source Code’ file in either formats zip or tar.gz.

	Open the ‘Source Code’ file.
It should turn into a folder which contains a folder called
‘cubical’.
Choose a place for it to permanently stay,
this can be anywhere you like.

	Rename the folder ‘cubical’ to ‘cubical-0.3’.
Inside it, there should be a cubical.agda-lib file
with contents

name: cubical-0.3
include: .
depend:
flags: --cubical --no-import-sorts

This is the file that tells agda “this is a library” when
agda looks into this folder.
You can place the folder (now) called cubical-0.3 anywhere you like.
For the sake of this guide,
let’s say you put it in a place so that
the path is LOCATION/cubical-0.3.

Now we need to tell agda this cubical-0.3 library exists,
so that it will look for it when an agda file uses code from it.

	Open a terminal and do

agda -l fjdsk Dummy.agda

	Assuming you don’t already have an agda library called fjdsk,
you should see an error message of the form

Library 'fjdsk' not found.
Add the path to its .agda-lib file to
 'BLAHBLAHBLAH/libraries'
to install.
Installed libraries:
 none

The BLAHBLAHBLAH/libraries is where we tell agda of
the location of libraries.

Examples in common operating systems :

	On linux this might look something like :

/home/USERNAME/.agda/libraries

where USERNAME is your username on your computer.

	On MacOS this might look something like :

/Users/USERNAME/.agda/libraries

where USERNAME is your username on your computer.

	On windows this might look something like :

C:\Users\USERNAME\AppData\Roaming\agda\libraries

where USERNAME is your username on your computer.

	Navigate to home/USERNAME or Users/USERNAME or C:\Users\USERNAME\AppData\Roaming\agda
using cd.

	Do the following to see hidden files :

ls -la

	If there is no .agda (agda for windows) folder, simply create one by doing

mkdir .agda

(or mkdir agda for windows)

If you do ls -la again, you should see .agda in the list.

	Go into that folder by doing

cd .agda

	Check the contents of .agda by doing ls -la.
Create a file libraries if there isn’t one already.
Inside it, put

LOCATION/cubical-0.3/cubical.agda-lib

Save the file and close it.

	Restart the terminal.
Now do agda -l fjdsk Dummy.agda in the terminal again.
This time the error message should be

Library 'fjdsk' not found.
Add the path to its .agda-lib file to
 'BLAHBLAHBLAH/libraries'
to install.
Installed libraries:
 cubical-0.3
 (LOCATION/cubical-0.3/cubical.agda-lib)

Congratulations, agda is now aware of
the existence of the cubical-0.3 library.

Getting The HoTT Game

The HoTT Game is also an agda library
so we need to repeat the above process for it.

	In a terminal, navigate to
where you would like to put the HoTT Game,
as with the cubical library it can go anywhere.
(You can use cd to navigate folders.)

	Use git clone https://github.com/thehottgame/TheHoTTGame.git.
This should copy the HoTT Game repository as
a folder called TheHoTTGame.
For the purposes of this guide,
let’s say you have put the HoTT Game in your computer
at the path

LOCATION1/TheHoTTGame

Inside it, you should see many files,
one of which should be TheHoTTGame.agda-lib.

	Go back to BLAHBLAHBLAH/libraries
and add the following line

LOCATION1/TheHoTTGame/TheHoTTGame.agda-lib

	In terminal, use agda -l fjdsk Dummy.agda again.
The error message should now look something like

Library 'fjdsk' not found.
Add the path to its .agda-lib file to
 'BLAHBLAHBLAH/libraries'
to install.
Installed libraries:
 cubical-0.3
 (LOCATION/cubical-0.3/cubical-0.3.agda-lib)
 TheHoTTGame
 (LOCATION1/TheHoTTGame/TheHoTTGame.agda-lib)

	In Doom Emacs,
open TheHoTTGame/1FundamentalGroup/Quest0.agda and do C-c C-l
(Control-c Control-l).
If all went correctly, the text should be highlighted and you should be ready to go.
Congratulations, you can now play the HoTT Game.

Installing with Nix

Linux and MacOS

Nixpkgs maintains a set of agda libraries that can be added to a
derivation managed by the nix package manager,
see here[#16]
for details.
The file shell.nix in our repository contains a derivation that will add emacs, agda, the agda standard library,
and cubical agda to your local nix store and subsequently to a local shell environment by adding these locations to your PATH.

However, because user configurations for emacs are mutable,
it will not (easily) manage your (emacs configuration) dot-files,
so we will use the underlying emacs provided by nixpkgs but install doom emacs normally in your local user’s environment.

	Install doom emacs (or whichever text editor you prefer)
via the method described for your operating system
here.
(If you are on Windows with NixOS on WSL2 then you are a linux
user for the rest of the installation and should do everything in a terminal inside NixOS.)

	Get agda2-mode support to doom (or whichever editor you prefer)
via the method described above.

	Clone our repository into a folder by going to some directory using cd and doing

git clone https://github.com/thehottgame/TheHoTTGame.git

This can be done anywhere you like.

	Install Nix (not NixOS) using following the guidance
on the official site[#17].
We install the single-user version for linux
(compare this with what is written on the official website):

sh <(curl -L https://nixos.org/nix/install) --no-daemon

If you are on MacOS this will be different, and if you are on Windows using NixOS
then this should also be exactly what you need.

	Open a terminal, and use cd to navigate to the folder TheHoTTGame, which was cloned before.
In TheHoTTGame, do

nix-shell

It might be that you need to restart your computer for this to work,
and you might need to wait a little bit for it to start working,
it might stay blank for a while.
Later booting of nix-shell should be faster than the first.

This should open up a Nix shell (inside your usual terminal),
from which you can do all the usual things in a terminal and more.
The above mentioned packages should automatically be loaded on your PATH.
The above is all defined by the package set in
shell.nix in the folder TheHoTTGame.

	Each time you wish to use agda (in particular its libraries),
you should do step 5 to load the requisite packages onto the PATH so that they can be found.

	If you got doom, go back to .doom.d/init.el
and make sure that instead of uncommenting ;; agda in the ;; lang,
replace it with (agda +local) to tell doom to use the agda-mode
version specified by the local environment.
Once the file is saved, sync doom from within the nix-shell that was loaded above:

doom sync

	You can now load the agda source code in this by starting doom from the nix-shell:

doom run .

Open the file 0Trinitarianism/Quest0.agda and tell agda-mode to load and check it by doing
SPC m l (space, m and l, in that order.)
If everything is configured correctly, you should get nice colors and any {!!}
will become interactive holes to fill.

Windows

First have a read of the previous section for Linux and MacOS for an overview,
since once you get NixOS with WSL2, you will be using a Linux operating system anyway.

	Get WSL2 following instructions here[#18].
You might also like to follow a video guide[#19].
Reboot your system.

	By default WSL2 will get ubuntu, which is fine, but is not the operating system we will use.
We want to get NixOS, which we can do by following instructions
in the quick start section of this github page[#20].
Reboot your system.

	Reopen NixOS and follow the
rest of the installation instructions as if you
are a linux user.

Footnotes

[#1]
https://sites.google.com/site/wakelinswan/teaching/installing-agda

[#2]
https://github.com/banacorn/agda-mode-vscode#agda-language-server

[#3]
https://github.com/derekelkins/agda-vim

[#4]
https://github.com/thehottgame/TheHoTTGame/issues

[#5]
https://agda.readthedocs.io/en/v2.5.4.2/getting-started/installation.html#prebuilt-packages-and-system-specific-instructions

[#6]
https://chocolatey.org/install

[#7]
https://docs.haskellstack.org/en/stable/install_and_upgrade/#windows

[#8]
https://github.com/thehottgame/TheHoTTGame/issues

[#9]
https://github.com/hlissner/doom-emacs#install

[#10]
https://earvingad.github.io/posts/doom_emacs_windows/

[#11]
https://typeof.net/Iosevka/

[#12]
https://support.microsoft.com/en-us/office/add-a-font-b7c5f17c-4426-4b53-967f-455339c564c1

[#13]
https://github.com/thehottgame/TheHoTTGame/issues

[#14]
https://agda.readthedocs.io/en/latest/tools/package-system.html

[#15]
https://github.com/agda/cubical/releases

[#16]
https://github.com/NixOS/nixpkgs/blob/master/doc/languages-frameworks/agda.section.md

[#17]
https://nixos.org/download.html#nix-install-linux

[#18]
https://docs.microsoft.com/en-us/windows/wsl/install

[#19]
https://www.youtube.com/watch?v=_fntjriRe48&t=985s

[#20]
https://github.com/Trundle/NixOS-WSL

Emacs and Unicode Commands

Agdapad

Agdapad uses emacs but not doom emacs,
so only the agda shortcuts (below) are relevant.

Notation

	SPC means space bar

	C-x means Ctrl-x

	M-x means Alt-x for non-Macs and Option-x for Macs

	S-x means Shift-x

	RET means enter

Example: C-c C-l in Agda files is Ctrl-c, let go, Ctrl-l.
For the input of unicode characters go to the end of this page or visit
this site <https://agda.readthedocs.io/en/latest/tools/emacs-mode.html#keybindings>.

General Doom Emacs usage

The ‘ambient mode’ is called evil mode and follows
vim-like bindings.
The following commands are for evil mode:

	SPC h b b to look for bindings (keyboard shortcuts)

	SPC f f to find files. can use TAB
for auto-completing paths and Backspace to go up a directory

	h j k l for left down up right

	SPC b k to kill ‘buffers’ (any little window is a buffer).
In general SPC b gives you many options for buffers.

	SPC w k to kill unwanted windows
(emacs can get split up into many windows)
In general SPC w gives you many options for windows.

	i to go into insert mode (in insert mode you can insert text)
and ESC or C-g to go back to evil mode.

	C-_ to undo (be careful with this, undo can go too far;
going into and out of insert mode is considered “one change”
in evil mode, so undoing might undo a
lot of changes made in insert mode).

	r to redo (be careful with this, redo can go too far).

	SPC h ' to look up how to write a symbol.
(Put your cursor on the symbol first.)

Agda usage

Important

To insert text in the agda file use i to enter insert mode.
To escape insert mode do ESC or C-g.
All the commands below should be done whilst in insert mode.

	Load : C-c C-l loads the file

	Check the goal : C-c C-, checks goal of the hole your cursor is in.

	Fill the goal : C-c C-SPC fills hole your cursor is in.

	Refine the goal : C-c C-r refines the hole your cursor is in.

	Case on x : C-c C-c does cases on x, where x is in the hole your cursor is in.

	Deduce : C-c C-d asks you to give it term / point x,
it deduces the type / space that x belongs to

	Normalise : C-c C-n asks you to give it term / point x,
it ‘reduces’ x to its ‘simplest (normalised) form’

	Combo : C-c C-. does C-c C-, and C-c C-d

	Looking up definitions : in agdapad, clicking on something with the wheel of your mouse
looks up the definitions of that thing (try clicking on Type for example).
In doom emacs, M-SPC c d looks up the definition of the thing you are hovering over.

You can find more commands for agda in emacs
here[#1].

Unicode commands

In general follow the guidance given above to learn unicode commands.
However here are some commonly used ones to get you started

	insert \to for →

	insert \== for ≡

	insert \==n for ≢

	insert \bot for ⊥

	insert \top for ⊤

	insert \neg for ¬

	insert \GS or \Sigma for Σ

	insert \cong for ≅

	insert \^ for superscript, e.g. S\^1 for S¹

	insert \bN for ℕ and \bZ for ℤ

	insert \. for ∙

	insert \sqcup for ⊔

You can find more common symbols
here[#2].

Footnotes

[#1]
https://agda.readthedocs.io/en/latest/tools/emacs-mode.html#keybindings

[#2]
https://agda.readthedocs.io/en/latest/tools/emacs-mode.html#show-me-some-commonly-used-characters

Getting Git on MacOS

On certain older versions of MacOS one needs to get the right version of git.

Check the version

Check if you have the right version of ``git` <gettingGit>`_.
Macs come with git pre-installed.
You can open terminal and type

git --version

to see what version of git you have.
It is most likely outdated if you’ve never used git before.

Get the right version

To get the latest version
visit this site[#1] .

To tell your computer to use the correct version of git,
we need to do the following :

	Open terminal and do the following to bring yourself to your home
“directory”.

cd

	Do the following to show all files in this “directory”.

ls -la

Amongst these we are interested in a file called .zprofile
or .bash_profile if your mac is older.

	Look at the top of your terminal window and you should see zsh
or bash if you’re on an older mac.
This is the “shell” that your mac is using for terminal.
If it is zsh,

open .zprofile

This should open the file .zprofile with text editor.
Now add the following to the end of the file

If you terminal was using bash instead, do

open .bash_profile

This should open .bash_profile with text editor.
Now add the the following to the end of the file

Once you’ve done this, save the files and close them.

	Restart terminal and do the following again

You should see the version has now updated.

Footnotes

[#1]
https://sourceforge.net/projects/git-osx-installer/

Trinitarianism

	Overview
	Terms and Types

	Non-dependent Types

	Dependent Types

	What is ‘the Same’?

	Quest 0 - Terms and Types
	Part 0 - True / Unit / Terminal object

	Part 1 - False / Empty / Initial object

	Part 2 - The natural numbers

	Part 3 - Universes

	Quest 1 - Dependent Types
	Part 0 - Predicates / Dependent Constructions / Bundles

	Part 1 - Interpretations of Bundles

	Part 2 - Using the Trinitarianism

	Quest 2 - Sigma Types
	Part 0 - Existence / Dependent Pair / Total Space of Bundles

	Part 1 - Making terms in Sigma Types

	Part 2 - Using Terms in Sigma Types

	Quest 2 - Side Quests
	A Tautology / Currying / Cartesian Closed

	Quest 3 - Pi Types
	Part 0 - Defining Addition

	Part 1 - The Statement

	Part 2 - Remarks

	Quest 3 - Side Quests
	Decidability of isEven

	Quest 4 - Paths and Equality
	Part 0 - The Identity Type

	Part 1 - The Path Space

	Part 2 - Properties of the Path Space

	Part 3 - Univalence

	Quest 4 - Side Quests
	Functional Extensionality

	Justifying J

	Quest 5 - Dependent Paths
	Part 0 - A motivating example

	Part 1 - Dependent Paths

	Part 2 - How pathToFun Interacts with Other Types

Footnotes

Overview

This arc introduces the setting “a place to do maths”.
The “types” that will populated this “place”
will have three interpretations:

	Proof theoretically, with types as propositions

	Type theoretically, with types as programs

	Category theoretically (geometrically),
with types as objects (spaces) in a category (the space of spaces)

[image: the holy trinity]

Terms and Types

Here are some things that we could like to have in a ‘place to do maths’

	objects to reason about (E.g. ℕ)

	recipes for making things inside objects
(E.g. n + m for n and m in naturals.)

	propositions to reason with (E.g. n = 0 for n in naturals.)

	a notion of equality

In proof theory, types are propositions and terms of a type are their proofs.
In type theory, types are programs / constructions and
terms are algorithms / recipes.
In category theory, types are objects (spaces) and
terms are generalised elements (points in the space).

Non-dependent Types

	false / empty / initial object

	true / unit / terminal object

	or / sum / coproduct

	and / pairs / product

	implication / functions / internal hom

Dependent Types

	predicate / type family / bundle

	substitution / substitution / pullback (of bundles)

	existence / Σ type / total space of bundles

	for all / Π type / space of sections of bundles

What is ‘the Same’?

The last missing piece is a notion of equality.
How HoTT treats equality is where it deviates from its predecessors.

Footnotes

Quest 0 - Terms and Types

There are three ways of looking at A : Type.

	proof theoretically, “A is a proposition”

	type theoretically, “A is a construction”

	geometrically / categorically,
“A is a space and Type is the category of spaces”.

A first example of a type construction is the function type.
Given types A : Type and B : Type,
we have another type A → B : Type which can be seen as

	the proposition “A implies B”

	the construction ways to convert A recipes to B recipes”

	the space of maps from A to B,
i.e. maps from A to B correspond to points of A → B.

	internal hom of the category Type

To give examples of this, lets make some types first.

Part 0 - True / Unit / Terminal object

data ⊤ : Type where
 tt : ⊤

It reads “⊤ is an inductive type with a constructor tt”,
with interpretations

	⊤ is a proposition “true” and there is a proof of it, called tt.

	⊤ is a construction “top” with a recipe called tt

	⊤ is the singleton space

	⊤ is a terminal object: every object has a morphism into ⊤ given by · ↦ tt

In general, the expression a : A is read “a is a term of type A”,
and has interpretations interpretations,

	a is a proof of the proposition A

	a is a recipe for the construction A

	a is a point in the space A

	a is a generalised element of the object A in the category Type.

The above tells you how we make a term of type ⊤.
Lets see an example of using a term of type ⊤:

TrueToTrue : ⊤ → ⊤
TrueToTrue = {!!}

	enter C-c C-l (this means Ctrl-c Ctrl-l).
Whenever you do this, agda will check the document is written correctly.
This will open the *Agda Information* window looking like

?0 : ⊤ → ⊤
?1 : ⊤
?2 : ⊤

This says you have three unfilled holes.

	Now you can fill the first hole.

	Navigate to the hole { } using C-c C-f (forward) or C-c C-b (backward)

	Enter C-c C-r. The r stands for refine.
Whenever you do this whilst having your cursor in a hole,
agda will try to help you.

	You should see λ x → { }. This is agda notation for x ↦ { }
and is called λ abstraction, think “λ for let”.

	Navigate to the new hole

	Enter C-c C-, (this means Ctrl-c Ctrl-comma).
Whenever you make this command whilst having your cursor in a hole,
agda will check the goal.

	The goal (*Agda information* window) should look like

Goal: ⊤
—————————————————————————
x : ⊤

you have a proof/recipe/generalized element x : ⊤
and you need to give a proof/recipe/generalized element of ⊤

	Write the proof/recipe/generalized element x of ⊤ in the hole

	Press C-c C-SPC to fill the hole with x.
In general when you have some term (and your cursor) in a hole,
doing C-c C-SPC will tell agda to replace the hole with that term.
agda will give you an error if it cant make sense of your term.

	The *Agda Information* window should now only have two unfilled holes left,
this means agda has accepted your proof.

?1 : ⊤
?2 : ⊤

There is more than one proof (see Quest0Solutions.agda).
Here is an important one:

TrueToTrue' : ⊤ → ⊤
TrueToTrue' x = { }

	Navigate to the hole and check the goal.

	Note x is already taken out for you.

	You can try type x in the hole and C-c C-c

	c stands for cases”.
Doing C-c C-c with x in the hole
tells agda to do cases on x”.
The only case is tt.

One proof says for any term x : ⊤ give x again.
The other says it suffices to do the case of tt,
for which we just give tt.

The same”

Are these proofs “the same”? What is “the same”?

(This question is deep and should be unsettling.
The short answer is that they are internally but
not externally the same.)

Built into the definition of ⊤ is the way agda can make a map out of ⊤
into another type A, which we have just used.
It says to map out of ⊤ it suffices to do the case when x is tt”, or

	the only proof of ⊤ is tt

	the only recipe for ⊤ is tt

	the only point in ⊤ is tt

	the only one generalized element tt in ⊤

Lets define another type.

Part 1 - False / Empty / Initial object

data ⊥ : Type where

This reads “⊥ is an inductive type with no constructors”,
with interpretations

	⊥ is a proposition “false” with no proofs

	⊥ is a construction “bot” with no recipes

	⊥ is the empty space

	There are no generalized elements of ⊥ (it is a strict initial object)

We can make a map from ⊥ to any other type, in particular into ⊤.

explosion : ⊥ → ⊤
explosion x = {!!}

	Navigate to the hole and do cases on x.

agda knows that there are no cases so there is nothing to do!
(See Quest0Solutions.agda)
Our interpretations:

	“false” implies “true”.
In fact the same proof gives “false” implies anything (principle of explosion)

	One can convert recipes of ⊥ to recipes of ⊤.
In fact the same construction gives a recipe of
any other construction since
there are no recipes of ⊥.

	There is a map from the empty space to the singleton space.
In fact given any space A , there is a map
from the empty space to A.

	⊥ is has a map into ⊤.
This is due to ⊥ being initial
in the category Type.

Part 2 - The natural numbers

We can also encode “natural numbers” as a type.

data ℕ : Type where
 zero : ℕ
 suc : ℕ → ℕ

Our interpretations are:

	ℕ has no interpretation as a proposition since
there are “too many proofs” -
mathematicians classically don’t distinguish
between proofs of a single proposition.
(ZFC doesn’t even mention logic internally,
but type theory does.)
In this sense constructions are proof relevant types.

	As a construction :

	ℕ is a type of construction

	zero is a recipe for ℕ

	suc takes an existing recipe for ℕ and gives
another recipe for ℕ.

	Categorically :
ℕ is a natural numbers object in the category Type.
This means it is equipped with morphisms zero : ⊤ → ℕ
and suc : ℕ → ℕ such that
given any ⊤ → A → A there exist a unique morphism ℕ → A
such that the diagram commutes:

[image: nno]

	Geometrically : ℕ is a space with a point zero
and for every point n in ℕ, there is another point
suc n in ℕ.

To see how to use terms of type ℕ, i.e. to induct on ℕ,
go to Quest 1 - Dependent Types.

Part 3 - Universes

You may have noticed the notational similarities between
zero : ℕ and ℕ : Type.
The type Type has the following interpretations :

	As a construction :
any type of construction is a recipe for Type.

	Geometrically :
Type is a space of spaces.
Each individual point in Type is a space.

This may have lead you to the question, Type : ?.
In type theory, we simply assert Type : Type₁.
But then we are chasing our tail, asking Type₁ : Type₂.
Type theorists make sure that every type
(i.e. anything the right side of :)
itself is a term (i.e. anything on the left of :),
and every term has a type.
So what we really need is

Type : Type₁, Type₁ : Type₂, Type₂ : Type₃, ⋯

These are called universes.
The numberings of universes are called levels.
It will be crucial that types can be treated as terms.
This will allows us to

	talk about predicates i.e. “propositions depending on a variable”.
E.g. the proposition “n is even” depends on a natural number n.
See the next quest where we elaborate on this example.

	reason about “structures” such as “the structure of a group”,
to express “for all groups, …”

	do category theory without stepping out of the theory.
(For experts, we have Grothendieck universes.)

	reason about when two types are “the same”,
for example when are two definitions of
the natural numbers “the same”? What is “the same”?

Footnotes

Quest 1 - Dependent Types

In a “place to do maths”
we would like to be able to express and “prove”
the statement

The statement

There exists a natural that is even.

The goal of this quest is to define
what it means for a natural to be even.

Part 0 - Predicates / Dependent Constructions / Bundles

This requires the notion of a predicate.
In general a predicate on a type A : Type is
a term of type A → Type.
For example,

isEven : ℕ → Type
isEven n = ?

	Do C-c C-l to load the file.

	Navigate to the hole.

	Input n in the hole and do C-c C-c.
You should now see

isEven : ℕ → Type
isEven zero = {!!}
isEven (suc n) = {!!}

It says “to define a function on ℕ,
it suffices to define the function on the cases,
zero and suc n,
since these are the only constructors given
in the definition of ℕ”.
This has the following interpretations :

	propositionally, this is the principle of mathematical induction.

	categorically, this is the universal property of a
natural numbers object.

	Navigate to the first hole and check the goal.
You should see

Goal: Type
———————————

Fill the hole with ⊤, since we want zero to be even.

	Navigate to the second hole.

	Input n and do C-c C-c again.
You should now see

isEven : ℕ → Type
isEven zero = ⊤
isEven (suc zero) = {!!}
isEven (suc (suc n)) = {!!}

We have just used induction again.

	Navigate to the first hole and check the goal.
agda should be asking for a term of type Type,
so fill the hole with ⊥,
since we don”t want suc zero to be even.

	Navigate to the next hole and check the goal.
You should see in the *Agda information* window,

Goal: Type
——————————————
n : ℕ

We are in the “inductive step”,
so we have access to the previous natural number.

	Fill the hole with isEven n,
since we want suc (suc n) to be even precisely when
n is even.
The reason we have access to the term isEven n is again
because we are in the “inductive step”.

	There should now be nothing in the *Agda information* window.
This means everything is working.
(Compare your isEven with our solutions in Quest2Solutions.agda.)

Part 1 - Interpretations of Bundles

The interpretations of isEven : ℕ → Type are

	Propositionally :
Already mentioned, isEven is a predicate on ℕ.

	As a construction :
isEven is a dependent construction.
Specifically, isEven n is either ⊤ or ⊥ depending on n : ℕ.

	Geometrically :
seen as a map from the space ℕ to
the space of spaces Type,
isEven assigns for every point n in ℕ
a space isEven n.
Pictorially, it looks like

[image: isEven]
We say isEven is a bundle of spaces over ℕ,
or simply a bundle over ℕ for short.
The space isEven n lying above each n
is called the fiber over n.
In this particular example the fibers are either empty
or singleton.

Note

In the above picture,
we have implicitly drawn ℕ as a bunch of “disconnected” points,
i.e. a discrete space.
See a later arc where
this is justified.

	Categorically :
isEven is an object in the over-category Type↓ℕ.

In general given a type A : Type,
a dependent type F over A is a term F : A → Type.
This should be drawn as a collection of space parameterised
by the space A.

[image: Bundle]
You can check if 2 is even by asking agda to “reduce” the term isEven 2
(do C-c C-n, “n” for normalize) and type in isEven 2.
(You can write in numerals since we are now secretly
using ℕ from the cubical agda library.)

Part 2 - Using the Trinitarianism

We introduced new ideas through each perspectives,
as each has their own advantage

	Types as propositions is often the most familiar perspective,
and hence can offer guidance for the other two perspectives.
However the current mathematical paradigm uses “proof irrelevance”
(two proofs of the same proposition are always “the same”),
which is not compatible with HoTT.
We will expand on this later.

	Types as constructions conveys the way in which “data” is important,
and should be preserved.

	Types as objects/spaces allows us to draw pictures,
thus guiding us through the syntax with geometric intuition.

For each new idea introduced,
make sure to justify it proof theoretically, type theoretically and
categorically/geometrically.

Footnotes

Quest 2 - Sigma Types

We are still trying to express and “prove” the statement

The statement

There exists a natural that is even.

We will achieve this by the end of this quest.

Part 0 - Existence / Dependent Pair / Total Space of Bundles

Recall from Quest 1 - Dependent Types
that we defined isEven.
What’s left is to be able write down “existence”.
In maths we might write

∃ x ∈ ℕ, isEven x

which in agda notation is

Σ ℕ isEven

This is called a sigma type, which has three interpretations:

	the proposition “there exists an even natural”

	the construction
“keep a recipe n of naturals together with a recipe of isEven n”

	the total space of the bundle isEven over ℕ,
which is the space obtained by putting together all the fibers.
Pictorially, it looks like

[image: SigmaTypeOfIsEven]
which can also be viewed as the subset of even naturals,
since the fibers are either empty or singleton.
(It is a subsingleton bundle).

Part 1 - Making terms in Sigma Types

Making a term of this type has three interpretations:

	(giving a proof that there existence of an even natural amounts to giving)
a natural n : ℕ and a proof hn : isEven n that n is even.

	pairing a recipe n : ℕ with a recipe hn : isEven n.

	(giving a point in the total space is giving) a point n : ℕ downstairs
together with a point hn : isEven n in its fiber.

Now you can prove that there exists an even natural:

	Formulate the statement you need. Make sure you have it of the form

Name : Statement
Name = {!!}

	Load the file, go to the hole and refine the goal.

	If you formulated the statement right it should split into {!!} , {!!}
and you can check the types of terms the holes require.

	Fill the holes. There are many proofs you can do!

In general when A : Type is a type and B : A → Type is a
predicate/dependent construction/bundle over A,
we can write the sigma type Σ A B whose terms are pairs a , b
where a : A and b : B a.
In the special case when B is not dependent on a : A,
i.e. it looks like λ a → C for some C : Type then
Σ A B is just

	the proposition “A and C”
since giving a proof of this is the same as giving a proof
of A and a proof of C

	a recipe a : A together with a recipe c : C

	B is now a trivial bundle since the fibers B a are
constant with respect to a : A.
In other words it is just a product Σ A B ≅ A × C.
For this reason,
some refer to the sigma type as the dependent product,
but we will avoid this terminology.

× : Type → Type → Type
A × C = Σ A (λ a → C)

agda supports the notation _×_ (without spaces)
which means from now on you can write A × C (with spaces).

Part 2 - Using Terms in Sigma Types

There are two ways of using a term in a sigma type.
We can extract the first part using fst or the second part using snd.
Given x : Σ A B there are three interpretations of fst and snd:

	Viewing x as a proof of existence
fst x provides the witness of existence and snd provides the proof
that the witness fst x has the desired property

	Viewing x as a recipe fst extracts the first component and
snd extracts the second component

	Viewing x as a point in the total space of a bundle
fst x is the point that x is over in the base space and snd x
is the point in the fiber that x represents.
In particular you can interpret fst as projection from the total space
to the base space, collapsing fibers.

For example to define a map that takes an even natural and divides it by two
we can do

div2 : Σ ℕ isEven → ℕ
div2 x = {!!}

	Load the file, go to the hole and case on x.
You might want to rename fst₁ and snd₁.

div2 : Σ ℕ isEven → ℕ
div2 (fst₁ , snd₁) = {!!}

	Case on fst₁ and tell agda what to give for 0 , *,
i.e. what “zero divided by two” ought to be.

div2 : Σ ℕ isEven → ℕ
div2 (zero , snd₁) = {!!}
div2 (suc fst₁ , snd₁) = {!!}

	Navigate to the second hole and case on fst₁ again.
Notice that agda knows there is no term looking like 1 , *
so it has skipped that case for us.

div2 : Σ ℕ isEven → ℕ
div2 (zero , snd₁) = 0
div2 (suc (suc fst₁) , snd₁) = {!!}

	(n + 2) / 2 should just be n/2 + 1
so try writing in suc and refining the goal

	How do you write down n/2? Hint: we are in the “inductive step”.

Try dividing some terms by 2:

	Use C-c C-n and write div2 (2 , tt) for example.

	Try dividing 36 by 2.

Important observation :
the two proofs 2 , tt and 36 , tt of the statement
“there exists an even natural” are not “the same” in any sense,
since if they were div2 (2 , tt) would be “the same” div2 (36/2 , tt),
and hence 1 would be “the same” as 18.

“The same”

Are they “the same”? What is “the same”?

Footnotes

Quest 2 - Side Quests

A Tautology / Currying / Cartesian Closed

In this side quest,
you will construct the following functions.

uncurry : (A → B → C) → (A × B → C)
uncurry f x = {!!}

curry : (A × B → C) → (A → B → C)
curry f a b = {!!}

These have interpretations :

	uncurry is a proof that
“if A implies (B implies C)”,
then “(A and B) implies C”.
A proof of the converse is curry.

	currying[#1]

	this is a commonly occurring example of an adjunction.
See here[#2]
for a more detailed explanation.

Note that we have postulated the types A, B, C for you.

private
 postulate
 A B C : Type

In general, you can use this to
introduce new constants to your agda file.
The private ensures A, B, C can only be used
within this agda file.

Tip

agda is space-and-indentation sensitive,
i.e. the private applies to anything beneath it
that is indented two spaces.

Footnotes

[#1]
https://en.wikipedia.org/wiki/Currying#:~:text=In%20mathematics%20and%20computer%20science,each%20takes%20a%20single%20argument

[#2]
https://kl-i.github.io/posts/2021-07-12/#product-and-maps

Quest 3 - Pi Types

We will try to formulate and prove the statement

Problem statement

The sum of two even naturals is even.

Part 0 - Defining Addition

To do so we must define + on the naturals.
Addition takes in two naturals and spits out a natural,
so it should have type ℕ → ℕ → ℕ.

+ : ℕ → ℕ → ℕ
n + m = ?

Try coming up with a sensible definition.
It may not look the same as ours.

Hintn + 0 should be n and n + (m + 1) should be (n + m) + 1.

Part 1 - The Statement

Now we can make the statement that a sum of even naturals is even in agda.
Make sure it is of the form

Name : Statement
Name = ?

The statement should be of the form (x y : A) → B where A
represents the subset of even naturals
and B expresses what it means for the “sum of x and y” to be even.

HintGiven x y : Σ ℕ isEven we want to show that their sum
(really the sum of their fist components) is even,
so we should give isEven (x .fst + y .fst)

Tip

x .fst is another notation for fst x.
This works for all sigma types.

There are three ways to interpret this:

Spoiler
	For all even naturals x and y,
their sum is even.

	isEven (x .fst + y .fst) is a construction depending on two recipes
x and y.
Given two recipes x and y of Σ ℕ isEven,
we break them down into their first components,
apply the conversion _+_,
and form a recipe for isEven of the result.

	isEven (_ .fst + _ .fst) is a bundle over the categorical product
Σ ℕ isEven × Σ ℕ isEven and SumOfEven is a section of the bundle.
This means for every point (x , y) in Σ ℕ isEven × Σ ℕ isEven,
it gives a point in the fiber isEven (x .fst + y .fst).

More generally given A : Type and B : A → Type
we can form the pi type (x : A) → B x : Type
(in other languages Π (x : ℕ), isEven n),
with interpretations :

	it is the proposition “for all x : A, we have B x”,
and each term of the pi type is a collection of proofs ``bx : B x`,
one for each x : A.

	recipes of (x : A) → B x are made by
converting each x : A to some recipe of B x.
Indeed the function type A → B is
the special case where
the type B x is not dependent on x.
Hence pi types are also known as dependent function types.
Note that terms in the sigma type are pairs (a , b)
whilst terms in the dependent function type are
a collection of pairs (a , b) indexed by a : A

	Given the bundle B : A → Type,
we have the total space Σ A B which is equipped with a projection
fst : Σ A B → A.
A term of (x : A) → B x is a section of this projection.

We are now in a position to prove the statement. Have fun!

Part 2 - Remarks

Important

Once you have proven the statement,
check out our two ways of defining addition _+_ and _+'_
(in the solutions).

	Use C-c C-n to check that they compute the same values
on different examples.

	Uncomment the code for Sum'OfEven in the solutions.
It is just SumOfEven but with each + changed to +'.

	Load the file. Does the proof still work?

Our proof SumOfEven relied on
the explicit definition of _+_,
which means if we wanted to use our proof on
someone else’s definition of addition,
it might not work anymore.

Important Question

But _+_ and _+'_ compute the same values.
Are _+_ and _+'_ “the same”? What is “the same”?

Footnotes

Quest 3 - Side Quests

Decidability of isEven

Try to express and prove in agda the statement

Problem statement

Every natural number is even or not even.

We make a summary of what is needed:

	a definition of the type A ⊕ B (input \oplus),
which has interpretations

	the proposition “A or B”

	the construction with two ways of making recipes
left : A → A ⊕ B
and right : B → A ⊕ B.

	the disjoint sum of two spaces

	the coproduct of two objects A and B.
The type needs to take in parameters A : Type and B : Type

data _⊕_ (A : Type) (B : Type) : Type where
 ???

	a definition of negation. One can motivate it by the following

	Define A ↔ B : Type for two types A : Type and B : Type.

	Show that for any A : Type we have (A ↔ ⊥) ↔ (A → ⊥)

	Define ¬ : Type → Type to be λ A → (A → ⊥).

	a formulation and proof of the statement above

Footnotes

Quest 4 - Paths and Equality

If you have come here from Fundamental Group of the Circle
then have a look at the overview
to understand the philosophy of trinitarianism.

So far in trinitarianism
there has been no mention of “equality”;
we have never said what it meant for two
types or two terms to be “the same”.
However, in Fundamental Group of the Circle
we have expressed what it means for two spaces to look the same,
by creating a path from one space to the next (usually by an isomorphism).
Indeed we will take this to be our definition of (internal) equality.

We will often adopt the geometric perspective,
but change perspectives when appropriate.

Universe levels

In the solutions we always use Type u,
but just write Type here.
There is no conceptual difference with using
an arbitrary universe,
but in practice we want to be as general as possible.

It is useful to stick to just using Type,
and realise why it is not general enough when problems arise.

Part 0 - The Identity Type

The construction

Given A : Type and x y : A we have a type
Id x y : Type, called the identity type of x to y.

data Id {A : Type} : (x y : A) → Type where

 rfl : {x : A} → Id x x

The construction takes in (implicit) argument A : Type,
then for each pair of points x y : A it returns a space Id x y
with interpretations :

	Id x y is the proposition “x equals y (internally)”
and for every x, we have a proof rfl x that
“x is equal to itself (internally)”.
(Hence the name rfl, which is short for reflexivity.)

	The only recipe for the construction Id x y is given when
x is the same recipe as y.

	Id x y is the space of paths from x to y, i.e. points
in the space are paths from x to y in A.
For every point x in A,
there is the constant path rfl x at x.

	Id is a bundle over A × A and the diagonal map A → A × A,
taking x ↦ (x , x),
factors through Id → A × A
(viewing Id as the total space Σ (A × A) Id).

[image: idType]

Write this up in 0Trinitarinism/Quest4.agda.
We recommend you first try having
the explicit argument for rfl in rfl : (x : A) → Id x x,
so you can see exactly what is going on,
but we will use rfl with an implicit argument
rfl : {x : A} → Id x x.

Internal versus external equality

In the first perspective use the word “internal”
since there is also the notion of “external equality”
that we want to distinguish.
In short x and y are externally equal if
the computer believes they are the same term,
i.e. the string of symbols they simplify (normalise) to are
exactly the same.

If two terms are externally equal then they are internally equal,
and the proof that they are internally equal is rfl.
However, having a proof p : Id x y is not enough for
the computer to recognise x as the same term as y.

Exercise - Symmetry

For Id to be a good notion of equality it should at least be
an equivalence relation.
It is reflexive by having rfl in the definition.
We show that it is symmetric:

idSym : (A : Type) (x y : A) → Id x y → Id y x
idSym = {!!}

This has interpretations:

	Equality is symmetric

	We can turn recipes for the construction Id x y
into recipes for the construction Id y x

	Paths can be reversed

Add this to the file 0Trinitarianism/Quest4.agda
and try showing it.
We give a detailed explanation in the hints and solution.

Hint 0Assume we have a space A, points x y : A and
a proof of equality / recipe / path p : Id x y.
It may help to view Id x y as a construction
to think about how to proceed.

Hint 1If you case on p : Id x y
then you should see the following

idSym : (A : Type) (x y : A) → Id x y → Id y x
idSym A x .x rfl = {!!}

We interpret this as

	If x and y are equal by proof p
and we want to show something about x
y and p, then it suffices to consider
the case when they are externally equal;
that y is literally the term x and p is rfl.

	The only recipe we had for the construction Id x y
is rfl, so we should be able to reduce to this case.

	To map out of Id, viewed as a total space,
it suffices to map out of the diagonal.

[image: idRec]

SolutionSince we have reduced to the case for when both points are x,
we can simply supply a point in Id x x.
There is an obvious one.

idSym : (A : Type) (x y : A) → Id x y → Id y x
idSym A x .x rfl = rfl

The Geometric Perspective

We have not included a justification via the geometric perspective.
This is because intuitively it’s not quite obvious that to map out
of the space of paths it suffices to map the constant path.
We justify the mapping out property geometrically
in a side quest.

We can also make the relevant arguments implicit.
We will be using the following version from now on :

Sym : {A : Type} {x y : A} → Id x y → Id y x

Exercise - Transitivity

In 0Trinitarianism/Quest4.agda, try to formalize (and then prove)
the following interpretations of the same statement :

	Id is transitive, which says if Id x y and Id y z both hold, then
so does Id x z.

	recipes for Id x y and Id y z can be made into recipes for Id x z.

	paths can be concatenated

The statementidTrans : (A : Type) (x y z : A) → Id x y → Id y z → Id x z
idTrans = {!!}

You may wish to make some of the arguments implicit.
We could also introduce notation that suggests concatenation:

* : {A : Type} {x y z : A} → Id x y → Id y z → Id x z
* = {!!}

We will use _*_.

HintsThere are multiple ways of defining this.
Assuming p : Id x y and q : Id y z
we could

	case on p and identify x and y

	case on q and identify y and z

	case on both p and q, identifying all three

Solutions_*_ : {A : Type} {x y z : A} → Id x y → Id y z → Id x z
rfl * q = q

*0 : {A : Type} {x y z : A} → Id x y → Id y z → Id x z
p *0 rfl = p

*1 : {A : Type} {x y z : A} → Id x y → Id y z → Id x z
rfl *1 rfl = rfl

These three definitions will work slightly differently in practice.
We will use the first of the three,
but you can use whichever you prefer.

Exercise - Groupoid Laws

The identity type satisfies some further properties,
which you can formalize then prove.
You may notice that they look almost like the axioms of a group,
except a bit bigger - for example there is not just a single identity
element (refl works at each point in the space).

Note that our solutions may differ to yours depending on
your choice of how to define transitivity / concatenation.

	concatenating rfl on the left and right does nothing,

The statementsrfl* : {x y : A} (p : Id x y) → Id (rfl * p) p
rfl* = {!!}

*rfl : {x y : A} (p : Id x y) → Id (p * rfl) p
*rfl = {!!}

The first says if you concatenate rfl on the left
then it is equal to the original path.

Solutionsrfl* : {x y : A} (p : Id x y) → Id (rfl * p) p
rfl* p = rfl

*rfl : {x y : A} (p : Id x y) → Id (p * rfl) p
*rfl rfl = rfl

Note that we needed to case on the path in the second proof
due to our definition of concatenation.

Tip

If you are tired of writing {A : Type} {x y : A} each time
you can stick

private
 variable
 A : Type
 x y : A

at the beginning of your agda file,
and it will assume A, x and y implicitly
whenever they are mentioned.
Make sure it is indented correctly.
Beware that anything declared like this will be an
implicit argument.

We also recommend reading about the
module system[#1]
in agda.

	concatenating a path p with Sym p on the left and right gives rfl.

The statementsSym* : {A : Type} {x y : A} (p : Id x y) → Id (Sym p * p) rfl
Sym* = {!!}

*Sym : {A : Type} {x y : A} (p : Id x y) → Id (p * Sym p) rfl
*Sym = {!!}

SolutionsSym* : {A : Type} {x y : A} (p : Id x y) → Id (Sym p * p) rfl
Sym* rfl = rfl

*Sym : {A : Type} {x y : A} (p : Id x y) → Id (p * Sym p) rfl
*Sym rfl = rfl

	Concatenation is associative

The statementAssoc : {A : Type} {w x y z : A} (p : Id w x) (q : Id x y) (r : Id y z)
 → Id ((p * q) * r) (p * (q * r))
Assoc = {!!}

SolutionAssoc : {A : Type} {w x y z : A} (p : Id w x) (q : Id x y) (r : Id y z)
 → Id ((p * q) * r) (p * (q * r))
Assoc rfl q r = rfl

These axioms say that any type is a groupoid,
with the above structure.
This aligns well with the geometric perspective of types :
in classical homotopy theory any space has a groupoid structure
and any groupoid can be made into a space.

Recursor - The Mapping Out Property of Id

We may wish to extract the way we have made maps out of the identity type :

Mapping out property of Id

Assuming a space A and a point x : A.
Given a bundle M : (y : A) (p : Id x y) → Type over the “space of paths out of x”,
in order to make a map {y : A} (p : Id x y) → M y p,
it suffices to give a point in M x refl.
This is traditionally called the “recursor” of Id.
(We have still not justified this geometrically.)

For example, in order to prove *Sym : {A : Type} {x y : A} (p : Id x y) → Id (p * Sym p) rfl,
we would choose our bundle M to be λ y p → Id (p * Sym p) rfl,
taking each y : A and p : Id x y to the space of paths from (p * Sym p) to rfl
in Id x x.
When we proved this in the previous section,
agda figured out what M needed to be and just asked for a proof of the case
M x rfl.

In 0Trinitarianism/Quest4.agda, try formalising the mapping out property,
and call it outOfId.

The statementoutOfId : (M : (y : A) → Id x y → Type) → M x rfl
 → {y : A} (p : Id x y) → M y p
outOfId = {!!}

Note that we have used the symbol y in the type of M,
but it really is just a local variable and will not appear outside that bracket.
We made the last y an implicit argument, since p contains the data of y.

SolutionoutOfId : (M : (y : A) → Id x y → Type) → M x rfl
 → {y : A} (p : Id x y) → M y p
outOfId M h rfl = h

The proof is of course just casing on the path p,
as we are trying to extract that idea.

Part 1 - The Path Space

If you came here from the quest on Fundamental Group of the Circle
then you may be wondering why there has not been any mention of
the path space x ≡ y.
The reason is that whilst ≡ and Id are meant to represent the same idea,
the implementation of Id is simple - we were able to write it down;
whereas the implementation of ≡ is “external”,
and purely existing in cubical agda.
In this part we will show that the two are “the same” as spaces i.e. isomorphic,
and after this we will only use ≡ for equality and paths
(as is the convention in the cubical library[#2]).

We assert the following three axioms for the path space
(we will add another (univalence) in later):

	If x is a point in some space then refl is a proof of x ≡ x.

	The mapping out property, called J :

J : (M : (y : A) → x ≡ y → Type) → M x refl
 → {y : A} (p : x ≡ y) → M y p

This looks exactly like outOfId.

	The mapping out property applied to refl :

JRefl : (M : (y : A) → x ≡ y → Type) (h : M x refl)
 → J M h refl ≡ h

This says that when we feed refl to J M h it indeed gives us
what we expect - something equal to h.
Unfortunately, though (given correct M and h)
outOfId M h rfl would externally be equal to h,
J M h refl is not externally equal to h,
but this is a cubical agda issue and not a HoTT issue.

Paths versus Id

The goal

Given two points x y : A,
the path type x ≡ y is isomorphic to Id x y.
We introduce isomorphism in
Quest 0 of the Fundamental Group arc.

So we are trying to show

Path≅Id : (x ≡ y) ≅ (Id x y)
Path≅Id = {!!}

This involves a lot of small steps,
which we split up into hints.

Hint 0“Refining” in the hole will make it ask for the four components
in the proof of an isomorphism.

Path≡Id : (x ≡ y) ≅ (Id x y)
Path≡Id = iso {!!} {!!} {!!} {!!}

Hint 1To make an isomorphism we need to make maps forwards and backwards,
these go in the first two holes.

Path→Id : x ≡ y → Id x y
Path→Id = {!!}

Id→Path : Id x y → x ≡ y
Id→Path = {!!}

Hint 2To make the map forwards we will need to use J - the mapping
out property of the path space.
To map backwards we can use outOfId or just case on a path.

Path→Id : x ≡ y → Id x y
Path→Id {A} {x} = J {!!} {!!}

Id→Path : Id x y → x ≡ y
Id→Path rfl = {!!}

For the first, in order to state the motive we need the implicit arguments
A and x.

SolutionPath→Id : x ≡ y → Id x y
Path→Id {A} {x} = J (λ y p → Id x y) rfl

Id→Path : Id x y → x ≡ y
Id→Path rfl = refl

Hint 3Filling in what we have so far and extracting the relevant lemmas
we have

Path≅Id : (x ≡ y) ≅ (Id x y)
Path≅Id {A} {x} {y} = iso Path→Id Id→Path rightInv leftInv where

 rightInv : section (Path→Id {A} {x} {y}) Id→Path
 rightInv = {!!}

 leftInv : retract (Path→Id {A} {x} {y}) Id→Path
 leftInv = {!!}

We have filled in the necessary implicit arguments for you.

Hint 4Since section Path→Id Id→Path will first take in p : Id x y
we give such a p and case on it.
It should of course just turn into rfl.

Since retract Path→Id Id→Path will first take in p : x ≡ y
we directly use J.

Path≅Id : (x ≡ y) ≡ (Id x y)
Path≅Id {A} {x} {y} = iso Path→Id Id→Path rightInv leftInv where

 rightInv : section (Path→Id {A} {x} {y}) Id→Path
 rightInv rfl = {!!}

 leftInv : retract (Path→Id {A} {x} {y}) Id→Path
 leftInv = J {!!} {!!}

Hint 5Checking the goal for rightInv we should see it requires a point in
Path→Id (λ _ → x) ≡ rfl, which is the same as Path→Id refl ≡ rfl.
What’s happened is agda knows that Id→Path rfl is just refl
(they are externally equal), so instead of asking for a point of
Path→Id (Id→Path rfl) ≡ rfl it just asks for a proof of the reduced version.
(In our heads we reduce (λ _ → x) to refl but agda does the opposite.)

We extract the above result as a lemma :

Path→IdRefl : Path→Id (refl {x = x}) ≡ rfl
Path→IdRefl = {!!}

SolutionSince Path→Id uses J,
the only thing we can do here is use JRefl :

Path→IdRefl : Path→Id (refl {x = x}) ≡ rfl
Path→IdRefl {x = x} = JRefl (λ y p → Id x y) rfl

Hint 6For leftInv, giving the correct motive requires knowing what retract says.
It should look like

leftInv : retract (Path→Id {A} {x} {y}) Id→Path
leftInv = J (λ y p → Id→Path (Path→Id p) ≡ p) {!!}

Checking the goal we should see it requires a point in
Id→Path (Path→Id refl) ≡ refl.
It should be that we just can replace Path→Id refl with rfl
using our lemma Path→IdRefl : Path→Id refl ≡ rfl -
but we haven’t proven anything about paths yet!
Let us do so now : if f : A → B is a function (in our case Id→Path)
then if two of its inputs are the same x ≡ y then so are the outputs,
f x ≡ f y.

cong : (f : A → B) (p : x ≡ y) → f x ≡ f y
cong = {!!}

We can prove this directly using J or via Id.
(We call it cong' to avoid clashing with the library’s version)

SolutionsCong : (f : A → B) → Id x y → Id (f x) (f y)
Cong f rfl = rfl

cong' : (f : A → B) (p : x ≡ y) → f x ≡ f y
cong' {x = x} f = J (λ y p → f x ≡ f y) refl

cong'' : (f : A → B) (p : x ≡ y) → f x ≡ f y
cong'' f p = Id→Path (Cong f (Path→Id p))

From now on we will just use cong from the library,
but you can try to continue with your own version.
Now using cong we can define leftInv.
Noting that externally Id→Path rfl is the same as refl,
we just need to show that Id→Path (Path→Id refl) ≡ Id→Path rfl.

SolutionleftInv : retract (Path→Id {A} {x} {y}) Id→Path
leftInv = J (λ y p → Id→Path (Path→Id p) ≡ p) (cong (λ p → Id→Path p) Path→IdRefl)

Concluding that the two types are isomorphic is a good reason to accept them as “the same”
in the sense that if two spaces are isomorphic then they
share the same properties, because isomorphism should interact nicely with other constructions.
We expand upon this point in Part 3 - Univalence.

Part 2 - Properties of the Path Space

In Fundamental Group of the Circle
we assume a couple of results about the path space,
which we list here :

	The basics :
We can make sym (the analogue of Sym) and composition of paths (called _∙_);
we can show that paths also satisfy groupoid laws.

	We have already made cong in the previous part (in Hint 6).

	The function pathToFun which takes a path between spaces
and converts it to a function between the spaces,
following points along the path of spaces.

	The function endPt which follows a path along a bundle.

Some of these properties are what Homotopy Type theorists believe to be the
absolute minimal necessary philosophical foundations
for considering paths to be a good notion of equality :

	refl, sym and _∙_ give us that it is an equivalence relation

	cong tells us that any function respects equality.

	endPt and pathToFun approximately say
that any predicate / family / bundle B : A → Type respects equality.

The Basics

The direct proof of these are a good exercise on J, or can be accomplished by
porting over results from the identity type using Path→Id and Id→Path.
We won’t go through each proof, but it is worth noting that since equalities tend
to be non-external, a little more work is required.
To see solutions for this, please see 0Trinitarianism/Quest4Solutions.agda.

Chains of Equalities

Something that will help organizing the above proofs and work later on is a
notation for composition that suggests a “chain of equalities”.
Let’s say that we want to show that a + (b + c) ≡ c + (a + b) for naturals a b c : ℕ.
Then classically one might write

 a + (b + c)
≡ by associativity
 (a + b) + c
≡ by commutativity
 c + (a + b)

In agda we would have both proofs of associativity and commutativity.
Let’s call them ha and hc
(in practice they would probably be something like
+assoc a b c and +comm (a + b) c).
Then using some cleverly defined notation, we can write in agda

example : (a b c : ℕ) → a + (b + c) ≡ c + (a + b)
example a b c =
 a + (b + c)
 ≡⟨ ha ⟩
 (a + b) + c
 ≡⟨ hc ⟩
 c + (a + b)
 ∎

One you define _∙_ for composition of paths,
you can get access to this notation
by including the following code.
Try figuring out why it works.

≡⟨⟩_ : (x : A) → x ≡ y → y ≡ z → x ≡ z -- input \< and \>
_ ≡⟨ x≡y ⟩ y≡z = x≡y ∙ y≡z

_∎ : (x : A) → x ≡ x -- input \qed
_ ∎ = refl

infixr 30 _∙_
infix 3 _∎
infixr 2 _≡⟨_⟩_

All of this is included in the solutions file.

pathToFun

The function pathToFun (originally called transport in the cubical library)
has the following interpretations :

	If two propositions are equal then one implies the other.

	If two constructions can be identified then we can transport recipes
of A over to recipes of B

	If two spaces look the same / if there is a path between spaces in the space of spaces
then we can map one to the other
(it turns out that we can make pathToFun always give us an isomorphism).

Try formalizing and defining pathToFun in 0Trinitarianism/Quest4.agda.

The StatementpathToFun : A ≡ B → A → B

Hint 0Use J to reduce this to finding a map A → A,
and choose the identity map.

Solutionid : A → A
id x = x

pathToFun : A ≡ B → A → B
pathToFun {A} = J (λ B p → (A → B)) id

Show that pathToFun sends refl to the identity map.

The StatementpathToFunRefl : pathToFun (refl {x = A}) ≡ id
pathToFunRefl = {!!}

SolutionsSince the only thing we know about J is how
it computes on refl, we apply that :

pathToFunRefl : pathToFun (refl {x = A}) ≡ id
pathToFunRefl {A} = JRefl (λ B p → (A → B)) id

We might want to also make pathToFunReflx - which says what
pathToFun refl does at each point.

SolutionpathToFunReflx : (x : A) → pathToFun (refl {x = A}) x ≡ x
pathToFunReflx x = cong (λ f → f x) pathToFunRefl

endPt

The function endPt (originally called subst in the cubical library)
has the following meanings :

	If B is a predicate on A and x ≡ y
are equal terms of A then B x implies B y.
“We can substitute x for y in the proof of B x”.

	If B is a family of constructions dependent on terms of A
and x ≡ y are identified recipes of A,
then recipes of B x can be turned into recipes of B y.
“We can substitute the recipe x for y in the recipe for B x”.

	If B is a bundle over the space A and
we have a path x ≡ y between points in A,
then we can follow any “lifted path” starting at some bx : B x
to find its end point by : B y.

Predicates / families / bundles respect paths

If we have a predicate / family / bundle B as above
and an equality x ≡ y in A,
then we know that cong will give us an equality of spaces B x ≡ B y.
However, only in the presence of pathToFun is this equality any use -
surely if two spaces are equal then we should be able to
transport points from one to the other.
Hence endPt / pathToFun (often both referred to as transport)
justify the statement “predicates / families / bundles” respect paths.

Try to formalize and prove endPt in 0Trinitarianism/Quest4.agda.
Then show that it sends refl to what we expect.

SolutionsOne option it is a raw application of J.

endPt : (B : A → Type) (p : x ≡ y) → B x → B y
endPt {x = x} B = J (λ y p → B x → B y) id

endPtRefl : (B : A → Type) → endPt B (refl {x = x}) ≡ id
endPtRefl {x = x} B = JRefl ((λ y p → B x → B y)) id

We could also use cong and pathToFun as described above,
however due to size issues that we have not addressed in our
insufficiently general definition of cong,
we have used the library’s version of cong.
(Outside this quest we will be using the library’s version
of these definitions.)

endPt' : (B : A → Type) (p : x ≡ y) → B x → B y
endPt' B p = pathToFun (cong B p)

Part 3 - Univalence

Paths on Other Constructions

The path space tends to interact nicely with other constructions.
We give a list of examples here to demonstrate this point :

	For points (a0 , b0) (a1 , b1) : A × B in the product of two spaces
we have that (a0 , b0) ≡ (a1 , b1)
is “the same” space as the product of path spaces (a0 ≡ a1) × (b0 ≡ b1).
Formally we express “the same” using an isomorphism :

Path× : {A B : Type} (a0 a1 : A) (b0 b1 : B) → (_≡_ {A × B} (a0 , b0) (a1 , b1)) ≅ ((a0 ≡ a1) × (b0 ≡ b1))

where we have some kind of product of spaces (however you wish to define it).
We give a proof of this in Quest4Solutions;
it is quite long but a good exercise in using J.

	For points x y : A ⊔ B in the disjoint sum / coproduct of two spaces
we have that the space x ≡ y is one of the four cases

	If they are both “from A” then x ≡ y is “the same as” the corresponding path space in A

	If they are respectively from A and B then x ≡ y is “the same as” the empty space

	If they are respectively from B and A then x ≡ y is “the same as” the empty space

	If they are both “from B” then x ≡ y is “the same as” the corresponding path space in B

We go through this example in detail here.

	If we have two functions f g : A → B then f ≡ g is “the same” space as
(a : A) → f a ≡ g a.
This is called “functional extensionality”.
The HoTT proof of this is not straight forward,
but in the side quests
we will go through a cubical-specific proof,
which is much simpler.

Univalence

Now an important question arises from these considerations :

Important

We have nice ways of describing what paths between points in constructions are,
but what should paths in the space of spaces be?

Looking back on this quest (an perhaps one’s life experience) we might think “isomorphism”
as it is our competing notion of “the same” for spaces.
The univalence axiom says something along the lines of this :

Univalence

If two spaces are isomorphic then they are equal.

isoToPath : {A B : Type} → A ≅ B → A ≡ B

DetailActually univalence tends to refer to something slightly different,
whilst this is a corollary of it.
Refer to The HoTT Book[#3] for more details.

Hence any isomorphism we have shown can be upgraded to a path between spaces
in cubical agda.
For example (x ≡ y) ≡ (Id x y) can now be shown.

Footnotes

[#1]
https://agda.readthedocs.io/en/v2.6.0.1/language/module-system.html

[#2]
https://github.com/agda/cubical

[#3]
https://homotopytypetheory.org/book/

Quest 4 - Side Quests

Functional Extensionality

We show that two dependent functions
f g being equal is the same as
them being equal when applied to each
value of the domain.
We call one of these directions
functional extensionality :

funExt : {B : A → Type} {f g : (a : A) → B a} →
 ((a : A) → f a ≡ g a) → f ≡ g
funExt = {!!}

Write this up in agda and have a go at it.

We will cheat and use the native cubical definition of paths
(rather than using our axiomatic approach with J and JRefl etc),
since the HoTT proof of this is much more work.
A path in cubical agda between two points x and y
in a space A can be defined by just taking an arbitrary
point i on the “interval” I, to a point in the space A,
such that the end points agree.
Assuming we have the bundle B, functions f g,
a proof h of (a : A) → f a ≡ ga,
we can refine, and agda will assume such an i for us.

funExt : {B : A → Type} {f g : (a : A) → B a} →
 ((a : A) → f a ≡ g a) → f ≡ g
funExt h = λ i a → {!!}

Checking the goal you should see something like the following
(we have extracted the important parts):

 Goal: B a
——————————————————————————————————
a : A
i : I
h : (a₁ : A) → f a₁ ≡ g a₁
g : (a₁ : A) → B a₁ (not in scope)
f : (a₁ : A) → B a₁ (not in scope)
B : A → Type (not in scope)
A : Type (not in scope)
———— Constraints ————————————————————————
?0 (i = i1) = g a : B a
?0 (i = i0) = f a : B a

We break this down :

	agda has assumed an arbitrary i : I and a : A,
and is now asking for a point in B a.

	Let’s call whatever we put in the goal ?0; it has type B a.
The constraints say that at the start and end points of I
(called i0 and i1 respectively) 0? i should be
f a and g a respectively.

	To understand why agda also gave us an a : A
we can go back a step, removing a.
You should see that the goal at that point was a dependent function
that at the start and end points are f and g respectively.

	Try to complete the quest.
You will need that given a path p and i : I along the interval,
writing p i gives the corresponding point along the path p.

HintThe hypothesis h applied to the point a
gives us a path from f a to g a in B a.

SolutionfunExt : {B : A → Type} {f g : (a : A) → B a} →
 ((a : A) → f a ≡ g a) → f ≡ g
funExt h = λ i a → h a i

Now we can promote this to an isomorphism,
hence an equality between f ≡ g and
(a : A) → f a ≡ g a.
Try to formalize and prove this.

SolutionfunExtPath : (B : A → Type) (f g : (a : A) → B a) → (f ≡ g) ≡ ((a : A) → f a ≡ g a)
funExtPath {A} B f g = isoToPath (iso fun (funExt B f g) rightInv leftInv) where

fun : f ≡ g → (a : A) → f a ≡ g a
fun h = λ a i → h i a

rightInv : section fun (funExt B f g)
rightInv h = refl

leftInv : retract fun (funExt B f g)
leftInv h = refl

Justifying J

Work in progress.

Footnotes

Quest 5 - Dependent Paths

Part 0 - A motivating example

In Quest 0 - Working with the Circle we define the circle,
which we work with here.
We recommend also going through the definitions
for doubleCover, flipPath and Flip in the same quest.
They will be referred to here.

data S¹ : Type where
 base : S¹
 loop : base ≡ base

In said quest we experience mapping out of S¹ by casing on
a point x : S¹; this was doubleCover,
it was not a dependent function,
in the sense that doubleCover : (x : S¹) → Type where Type
does not depend on x.
We give an example of having to construct a map out of S¹
that is dependent on x:

example : (x : S¹) → doubleCover x → doubleCover x
example = {!!}

We intend for this map to flip each fiber doubleCover x
just like Flip : Bool → Bool flips Bool.

	We could case on x like we did in the definition of doubleCover,
resulting in

example : (x : S¹) → doubleCover x → doubleCover x
example base = {!!}
example (loop i) = {!!}

	Check and fill the first goal for the base case.

SolutionIt asks for a map Bool → Bool
since the fiber doubleCover base
is by definition Bool.
We give Flip since we want it to flip each fiber.

	In the second case we need to give a map
doubleCover (loop i) → doubleCover (loop i),
which by definition reduces to
flipPath i → flipPath i.
It is not immediately obvious what we can do here.
Case on things in flipPath i is not an option
for instance.

We should take a step back and notice what we have.
Firstly λ i → doubleCover (loop i) → doubleCover (loop i)
defines a path in the space of spaces
(it is a function space at each i).
It starts and ends at Bool → Bool.

On the other hand, the goal requires is a “path” starting
and ending at Flip : Bool → Bool,
and being a point in p i : doubleCover (loop i) → doubleCover (loop i)
at each point.
It moves along inside the path of spaces
λ i → doubleCover (loop i) → doubleCover (loop i).
However, this “path” p moving along inside the path of spaces
is not a path in a single space,
so we need to formalise this new notion.

Idea

What we need is a generalisation of paths :
we need paths that can move between spaces,
which we call “dependent paths”.

Part 1 - Dependent Paths

In general

Recall that if we have two spaces A0 A1 : Type (e.g. both Bool → Bool)
and a path A : A0 ≡ A1 between them
(e.g. λ i → doubleCover (loop i) → doubleCover (loop i)),
then any point in A0 can be transported along the path A
to a point in A1 using pathToFun a.k.a. transport.
Since A0 and A1 are internally equal,
one might wonder if we can even consider what it means for points x : A0
and y : A1 to be equal, perhaps keeping the path A in mind somehow
(e.g. x and y are both Flip).
We are asking whether the notion of a dependent path -
in this case a path dependent on A - can be made precise.
Externally x and y belong to different spaces
so it doesn’t make sense to ask for the path type x ≡ y,
but HoTT and cubical agda offer solutions to this.

In HoTT, a workaround is “say x and y are equal along A
when we have a path from pathToFun A x to y in the space A1”
(note that we made a choice of a path in A1 here;
we could have done the same with A0, with an inverted pathToFun).
This is sensible, since pathToFun A x is meant to be the point in A1
corresponding to x
under the identification of the spaces A0 and A1 given by A.
Try to define this in 1FundamentalGroup/Quest5.agda.

SolutionPathD : {A0 A1 : Type} (A : A0 ≡ A1) (x : A0) (y : A1) → Type
PathD A x y = pathToFun A x ≡ y

If you like, we can introduce suggestive notation for dependent paths,
but may be harder to read than PathD :

syntax PathD A x y = x ≡ y along A

So now we can write x ≡ y along A to mean paths from x to y
dependent on the path A.

There is a slightly different cubical agda way of going about this.
Intuitively a path in cubical agda is a starting point,
an ending point, and something in between that agrees on the boundary.
Thus a path dependent on A : A0 ≡ A1 from x to y can be
introduced by giving at each arbitrary i : I on the “interval”
a point t : A i such that t is externally equal to x at the start
and y at the end.

PathP : (A : I → Type) → A i0 → A i1 → Type

A takes each i : I to a space A i : Type,
so we can think of A as a path.
Then PathP takes A, a point x : A i0
in the starting space and a point y : A i1
in the ending space, and gives the space of dependent paths
along A.

We will try to mostly use the HoTT version of paths,
since HoTT is the main discussion here.
So we will assume that the two notions are the same
using an isomorphism PathPIsoPathD from the library.

PathPIsoPath : (A : I → Type) (x : A i0) (y : A i1) →
 (PathP A x y) ≅ (transport (λ i → A i) x ≡ y)

Let us continue with the example to understand how this works.

Using Dependent Paths

Going back to our example,
we need to give a dependent path from Flip
to Flip - dependent on the path λ i → flipPath i → flipPath i
in the space of spaces.
Let us extract this as a lemma :

example : (x : S¹) → doubleCover x → doubleCover x
example base = Flip
example (loop i) = p i where

 p : PathP (λ i → flipPath i → flipPath i) Flip Flip
 p = {!!}

At point loop i on the loop, we give
the point p i in flipPath i → flipPath i.
Note that PathP needs to know which path we are depending on,
and that is the first piece of data it takes in.

Now, instead of giving a PathP, as agda natively prefers,
we will give a PathD, using PathPIsoPathD.
PathPIsoPathD will give us an isomorphism,
but we only want the map backwards -
taking a PathD and giving us a PathP.
To do so we write _≅_.inv in the hole and refine.
It knows that the goal is a PathP,
so it should reduce to

p : PathP (λ i → flipPath i → flipPath i) Flip Flip
p = _≅_.inv {!!} {!!}

Check the goals,
in the first it should now be asking for an isomorphism,
which we give by refining with PathPIsoPathD,
the second hole depends on the first,
so it will make more sense when we can come back to it later.

p : PathP (λ i → flipPath i → flipPath i) Flip Flip
p = _≅_.inv (PathPIsoPathD {!!} {!!} {!!}) {!!}

Now try to give PathPIsoPathD
the necessary inputs.

SolutionIt just needs to know what path we want to be dependent over,
the starting point, and the ending point.

p : PathP (λ i → flipPath i → flipPath i) Flip Flip
p = _≅_.inv (PathPIsoPathD (λ i → flipPath i → flipPath i) Flip Flip) {!!}

Checking the final hole we see that we need a path from the function
pathToFun (λ i₁ → flipPath i₁ → flipPath i₁) Flip
to the function Flip.
This is now just a normal path in Bool → Bool.
We refrain from spoiling the rest of the proof.

HintTo prove that two functions are the same we can use funExt
to just check they are the same at each point.
Naturally, we extract this as a lemma so that we can case on the point in Bool.

Reminding ourselves of what flipPath looks like, and what pathToFun does,
we should be able to guess what the values on each side turn out to be.

Solutionsexample : (x : S¹) → doubleCover x → doubleCover x
example base = Flip
example (loop i) = p i where

 lem : (x : Bool) → pathToFun (λ i → flipPath i → flipPath i) Flip x ≡ Flip x
 lem false = refl
 lem true = refl

 p : PathP (λ i → flipPath i → flipPath i) Flip Flip
 p = _≅_.inv (PathPIsoPathD (λ i → flipPath i → flipPath i) Flip Flip) (funExt lem)

Mapping out of the circle

We might want to generalize the above process once and for all so that
we can map out the circle with greater ease.
We suggest that to map out of the circle into a bundle over the circle
`B : S¹ → Type,
it suffices to give a point b : B base to map base to,
and to give a PathD dependent on B and loop which
starts and ends at b.

Try to formalise and prove this in the quest.

HintYou need not, but we found it is convenient to define one for each
PathP and PathD.
The first is of course trivial.

outOfS¹P : (B : S¹ → Type) → (b : B base) → PathP (λ i → B (loop i)) b b → (x : S¹) → B x
outOfS¹P B b p base = b
outOfS¹P B b p (loop i) = p i

outOfS¹D : (B : S¹ → Type) → (b : B base) → b ≡ b along (λ i → B (loop i))
 → (x : S¹) → B x
outOfS¹D B b p x = {!!}

The next we can define using the first, using PathPIsoPathD.

SolutionoutOfS¹D : (B : S¹ → Type) → (b : B base) → b ≡ b along (λ i → B (loop i))
 → (x : S¹) → B x
outOfS¹D B b p x = outOfS¹P B b (_≅_.inv (PathPIsoPathD (λ i → B (loop i)) b b) p) x

Cases / Induction / Recursors / Universal properties

In general, given a higher inductive type we will always
have the above process, which can be interpreted in the following ways :

	It is casing on where the term came from or where the proof came from.
For example to map out of the proposition “A or B”
we can case on if the proof came from A or from B.
To map out of “A and B” we can case on the proof
and it must give us a pair, proving both.

	It is induction on the inductively defined type.
This was exemplified in our
discussion on the naturals.

	It is the mapping out property of the type, commonly called the recursor,
and it just considers what recipes went into making the type.
For example the only recipes that went into making the circle
are base and loop.

	Often this can be seen as a universal property.
For example the universal property of disjoint sums (a.k.a coproducts a.k.a “or”)
can be seen as saying
“to map out of A ⊔ B it suffices to give a
map out of A and a map out of B”

We should verify that the this mapping out property does actually give us
what we expect.
For example, we gave it a point b : B base to map base.
We therefore should expect that it does map base to b.
Tracing through the definitions we have made,
we should be able to see this is true externally.

More explicitly

outOfS¹DBase : (B : S¹ → Type) (b : B base)
 (p : b ≡ b along (λ i → B (loop i)))→ outOfS¹D B b p base ≡ b
outOfS¹DBase B b p = refl

Part 2 - How pathToFun Interacts with Other Types

When we are coming up with dependent paths between points in
equal spaces connected by some path A,
we end up with needing some idea of what
pathToFun looks like when it goes along the path.
For example, if A were λ i → B i → C i,
where B and C are respectfully paths between spaces,
then we might guess that we can describe pathToFun B f
more explicitly by checking what it does on points.

In this part we will consider different type constructions
and how paths between them convert to functions between them
via pathToFun.
A detailed motivating example can be found
here.

Function spaces

Suppose we have spaces A0 A1 B0 B1 : Type
and paths A : A0 ≡ A1 and B : B0 ≡ B1.
Then let pAB denote the path
λ i → A i → B i : (A0 → B0) ≡ (A1 → B1).
We want to figure out what pathToFun
does when it follows a function f : A0 → B0 along the path pAB.

We know by functional extensionality that the function
pathToFun pAB f : A1 → B1
should be determined by what it does to terms in A1,
so we can assume a1 : A1.
The idea is we “apply f by sending a1 back to A0”.
Since pathToFun (sym A) a1 is meant to give the point in A0
that “looks like a1”, we try applying f to this point,
then send it across again via the path B to the point
f (pathToFun (sym A) a1) looks like in B1.
We expect the outcome to be the same.

[image: pathToFunAndPiTypes]
Try to formalize and prove this in 0Trinitarianism/Quest5.agda.

The StatementpathToFun→ : {A0 A1 B0 B1 : Type} {A : A0 ≡ A1} {B : B0 ≡ B1} (f : A0 → B0) →
 pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1))
pathToFun→ = {!!}

There are several ways to state the same idea. We didn’t have to reverse the path A
for example.

Hint 0We can induct on both A and B.

Solution for Hint 0 J (λ A1 A → pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1)))
(
 J (λ B1 B → pathToFun (λ i → A0 → B i) f ≡ λ a → pathToFun B (f (pathToFun (sym refl) a)))
 (
 pathToFun refl f
 ≡⟨ {!!} ⟩
 (λ a → pathToFun refl (f (pathToFun (sym refl) a))) ∎
)
 B
)
A

Hint 1There are many small equalities that are needed,
for example, we need how sym and refl interact
and what pathToFun does to refl.
At some point it would be useful to just check that
the functions are equal on terms.

SolutionspathToFun→ : {A0 A1 B0 B1 : Type} {A : A0 ≡ A1} {B : B0 ≡ B1} (f : A0 → B0) →
 pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1))
pathToFun→ {A0} {A1} {B0} {B1} {A} {B} f =
 J (λ A1 A → pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1)))
 (
 J (λ B1 B → pathToFun (λ i → A0 → B i) f ≡ λ a → pathToFun B (f (pathToFun (sym refl) a)))
 (
 pathToFun refl f
 ≡⟨ pathToFunReflx f ⟩
 f
 ≡⟨ funExt (λ a →
 f a
 ≡⟨ cong f (sym (pathToFunReflx a)) ⟩
 f (pathToFun refl a)
 ≡⟨ cong (λ p → f (pathToFun p a)) (sym symRefl) ⟩
 f (pathToFun (sym refl) a)
 ≡⟨ sym (pathToFunReflx (f (pathToFun (sym refl) a))) ⟩
 pathToFun refl (f (pathToFun (sym refl) a)) ∎
)
 ⟩
 (λ a → pathToFun refl (f (pathToFun (sym refl) a))) ∎
)
 B
)
 A

More to come in the future

This quest is a work in progress.

Footnotes

Fundamental Group of the Circle

	Overview

	Quest 0 - Working with the Circle
	Part 0 - The Circle

	Part 1 - Refl ≡ loop is empty

	Part 2 - Defining flipPath via Univalence

	Part 3 - Lifting paths using doubleCover

	Quest 0 - Side Quests
	Different notions of “empty”

	Proving true≢false

	Defining cong

	Quest 1 - Loop Space of the Circle
	Part 0 - Definition of the Loop Space

	Part 1 - Making a Path From ℤ to Itself

	Part 2 - Winding Number

	Quest 2 - ℤ is a Set
	Part 0 - loopSpace loopSpace

	Part 1 - ℤ as a disjoint sum ℕ ⊔ ℕ

	Part 2 - Disjoint Sum of Sets is a Set

	Part 3 - Path Space of Disjoint Sums

	Part 4 - Proving Path≡⊔NoConfusion

	Part 5 - Using the Propositional Perspective

	Quest 3 - The Loop Space is ℤ
	Part 0 - rewind

	Part 1 - rewind is a right inverse

	Part 2 - rewind is a left inverse

	Part 3 - The Loop Space is ℤ

Footnotes

Overview

One key attraction of HoTT (homotopy type theory)
is for doing homotopy theory synthetically - like
how one does Euclidean geometry from axioms without needing
the existence of the real numbers.
In this arc we will formalize what it means for the circle
S¹ to have fundamental group ℤ in this setting.

Applying the philosophy of trinitarianism,
is strongly recommended in this arc.
However, it is designed so that anyone eager to see familiar
geometric results can also start here
with no prerequisites.
Hence, this arc mostly adopts a geometric (hence categorical)
perspective on types.

Footnotes

Quest 0 - Working with the Circle

In this series of quests we will prove that the fundamental group
of S¹ is ℤ.
In fact, our strategy will also show that the higher homotopy groups of
S¹ are all trivial.
You don’t need to know any prerequisites - in particular we will define
the fundamental group and higher homotopy groups
if you don’t know what they are already.

Important

In your cloned copy of the HoTT Game locate the file
1FundamentalGroup/Quest0.agda,
and open this file in emacs.
Before starting it is important to have a look at
our guide to emacs and list of emacs commands.

Part 0 - The Circle

Theory - Definition of the Circle

We begin by formalising the problem statement.

A construction of “the circle” is :

	a point called base

	an edge from that point to itself called loop

Here is our definition of the circle in agda.

data S¹ : Type where
 base : S¹
 loop : base ≡ base

[image: S1]
This reads :

	S¹ is a point in Type, the space of spaces.
In other words, S¹ is a space.

	base is a point in the space S¹

	loop is a path in S¹ from base to itself.
This is phrased as saying loop is a point in base ≡ base
the space of paths from base to base.

Path

We think of a path in a space A as consisting
of its starting point, its end point,
and some generic point in the middle
agreeing on the boundary.

You can see this as defining the circle via a CW-complex.

Type theory notation

In general a : A is read as a is a point
in the space A.
Note that in the above definition S¹ is seen
both as a point and a space depending on the context.
In cubical agda,
everything is a point in a “unique” space.

Type theory notation

In general when a b : A
(a and b are points in a space A),
we have a path space a ≡ b,
whose points are paths from
a to b in the space A.

Exercise - defining the constant path Refl

There are other paths in S¹,
for example the constant path at base.
In 1FundamentalGroup/Quest0.agda navigate to

Refl : base ≡ base
Refl = {!!}

We will guide you through defining it.
We are about to construct a path Refl : base ≡ base,
a path from base to base.

Tip

The {!!} are called holes.
These are blanks in the agda file that you can fill
to complete the quest.
You can write ? to make a new hole.

We will fill the hole Refl = {!!}.

	Make sure you are in insert mode by pressing i.
To escape insert mode press ESC.

Note

We have compiled a list of useful emacs and agda commands in
Emacs Commands.

	Enter C-c C-l (this means Ctrl-c Ctrl-l).

	Whenever you do this, agda will check the document is written correctly.
	We say agda compiles or loads the file.
This will open the *Agda Information* window looking like

?0 : base ≡ base
?1 : (something)
?2 : (something)
...

This is the list of unfilled holes that are in your file currently.
You should see that the holes in the file have changed in appearance,
for example :

Refl : base ≡ base
Refl = { }0

These are what holes look like when the file is compiled.
The numbering is just for reference and may change upon reloading.

	Navigate between holes using C-c C-f (forward)
or C-c C-b (backward).

	Navigate to the first hole, making sure your cursor is inside the hole.
Check the goal using C-c C-, (this means Ctrl-c Ctrl-comma).
Whenever you do C-c C-,, agda will tell you what kind of “point” it expects in the hole.
The *Agda Information* window should be focused on this hole only :

Goal: base ≡ base

This says agda is expecting a path from base to base in the hole.
Making sure your cursor is still inside the hole, enter C-c C-r.
The r stands for refine.
Whenever you do this whilst having your cursor in a hole,
agda will try to help you.

	You should now see λ i → {!!}.
This is the agda way of writing i ↦ {!!}.
Load the file again (using C-c C-l) and
the *Agda Information* window should now look like :

?0 : S¹
...
?6 : (something)

———— Errors ———————————————
Failed to solve the following constraints:
 ?0 (i = i1) = base : S¹ (blocked on _3)
 ?0 (i = i0) = base : S¹ (blocked on _3)

Do not worry about the errors,
we will soon explain it.

	Navigate (C-c C-f and C-c C-b) to that new hole in λ i → {!!} and
enter C-c C-, to check the goal.
The *Agda information* window should look like :

Goal: S¹
—————————————————————————
i : I
———— Constraints ——————————————
?0 (i = i1) = base : S¹ (blocked on _3, belongs to problem 4)
?0 (i = i0) = base : S¹ (blocked on _3, belongs to problem 4)
_4 := λ i → ?0 (i = i) (blocked on problem 4)

This says :

	agda is expecting a point in S¹ for this hole.

	you have a point i in I available to you.
You can think of I as the “unit interval”
and i as a generic point in the interval.

	The point in S¹ that you give has to satisfy the constraints that
it is base when “i = 1” and “i = 0”.
In agda, i0 and i1 are the “start” and “end” point of I.
Afterall, we are defining a path from base to itself.

	Don’t worry about the last line.

	Since Refl is meant to be the constant path at base,
write base in the hole.

	Press C-c C-SPC to fill the hole with base.
In general when you have some text (and your cursor) in a hole,
doing C-c C-SPC will tell agda to replace the hole with that text.
agda will give you an error if it can’t make sense of your text.

Tip

Everytime you are filling a hole,
it is recommended that you first write what you want to fill
in the hole then do C-c C-SPC.
You can do it in the reverse order,
however the recommended order has other benefits down the line.

	Load the file again (C-c C-l).
The *Agda Information* window should now look like this :

?0 : Bool
?1 : Bool ≅ Bool
?2 : Bool ≡ Bool
?3 : Type
?4 : doubleCover base
?5 : ⊥

The ?0 : S¹ has disappeared.
This means agda has accepted what you filled this hole with.

	If you want to play around with this you reset this question
by replacing what you wrote with ? and doing
C-c C-l.

Part 1 - Refl ≡ loop is empty

To get a better feel of S¹,
we show that the space of paths (homotopies) between
Refl and loop, written Refl ≡ loop, is empty.

Paths between paths

In general if we have p q : a ≡ b in a space A
then a path Path : p ≡ q in the path space a ≡ b
consists of

	the starting path p

	the end path q

	and some generic path in between Path i : a ≡ b
that agrees on the boundary

 Quest 0 - Side Quests

Quest 0 - Side Quests

Different notions of “empty”

The following are “the same”,

	there is a point f : A → ⊥ in the space of functions from A to the empty space

	there is a path p : A ≡ ⊥ in the space of spaces Type from A to the empty space

	there is an isomorphism i : A ≅ ⊥ (input \cong for ≅) of spaces

Here we will take “the same” to mean there are maps from any one to another
(they are “propositionally the same”).
We will first define the three.

In 1FundamentalGroup/Quest0.agda, uncomment this side quest
and locate these three definitions :

_toEmpty : (A : Type) → Type
A toEmpty = {!!}

pathEmpty : (A : Type) → Type₁
pathEmpty A = {!!}

isoEmpty : (A : Type) → Type
isoEmpty A = {!!}

Note

You can use underscores when you name a function.
agda will put the inputs in the underscores in order.

Tip

agda supports unicode symbols such as ⊥.
See here for how to insert ⊥ and other symbols.

Try to fill them in according to the above.
You may have noticed we used Type₁ in the second definition.
To find out what Type₁ is,
see Part 3 - Universes in Trinitarianism.

Check that your definitions are the same as ours by comparing with
the solutions in
1FundamentalGroup/Quest0Solutions.agda.
We will make maps from toEmpty A to isoEmpty A to pathEmpty A
and back to toEmpty A.

First we show that the empty space maps into any other space.
This is very useful when working with the empty space.

outOf⊥ : (A : Type) → ⊥ → A
outOf⊥ = {!!}

Try to fill in the definition without looking at the hint.

HintRecall the definition of the empty space
being a CW-complex with nothing in it.
We can always case
on variable points from CW-complexes.
What cases are there?

We fill in toEmpty→isoEmpty

toEmpty→isoEmpty : (A : Type) → toEmpty A → isoEmpty A
toEmpty→isoEmpty A = {!!}

Tip

You can use where to extract lemmas / make local definitions
like we did in defining flipIso;
see here.

Hint 0
	Check the goal to see what we have
and what we need to give.

	Assume f : toEmpty A by putting an f
before the =.

	Refine the goal to see what agda suggests.

Hint 1
	We need to give an isomorphism,
i.e. a map from A to ⊥,
and a map from ⊥ to A,
and proofs that these satisfy section and retract respectively.

	If we have a point in ⊥ then we can get a point in any space.

Try filling in

isoEmpty→pathEmpty : (A : Type) → isoEmpty A → pathEmpty A
isoEmpty→pathEmpty A = {!!}

HintWe converted an isomorphism to a path in
quest 0.

Lastly try filling in

pathEmpty→toEmpty : (A : Type) → pathEmpty A → toEmpty A
pathEmpty→toEmpty A = {!!}

	Check the goal

	We can assume a path p : pathEmpty A

	Check the goal again

	Since toEmpty A as defined as A → ⊥ we can assume a point x : A

	We can follow the point x along the path p using pathToFun,
as we did for flipPath in Quest 0 - Working with the Circle.

Proving true≢false

Locate 1FundamentalGroup/Quest0SideQuests/TrueNotFalse.agda
we will show

true≢false : true ≡ false → ⊥
true≢false = {!!}

We do this by making a subsingleton bundle over Bool
whose fiber over true is the singleton space ⊤
and fiber over false is the empty space ⊥.
The definition of ⊤ is

data ⊤ : Type where
 tt : ⊤

	Assume a path h : true ≡ false

	Define a map from Bool to Type
(as a lemma or using
where[#1]),
that takes true to ⊤ and false to ⊥.
This is a subsingleton bundle over Bool,
since each fiber is ⊤ and ⊥,
having only a single or no points.

	We can follow how the point tt : ⊤
changes along the path h using pathToFun,
as we did for flipPath in Quest 0 - Working with the Circle.
This should give you a point in the empty space ⊥.

Due to the previous side quest Different notions of “empty” this tells us
that the space true ≡ false is empty.

Defining cong

Under construction

Footnotes

[#1]
https://agda.readthedocs.io/en/v2.5.2/language/let-and-where.html#where-blocks

 Quest 1 - Loop Space of the Circle

Quest 1 - Loop Space of the Circle

Part 0 - Definition of the Loop Space

In this quest,
we continue to formalise the problem statement.

The problem statement

The fundamental group of S¹ is ℤ.

Intuitively,
the fundamental group of S¹ at base
consists of loops based as base up to homotopy of paths.
In homotopy type theory,
we have a native description of loops based at base :
it is the space base ≡ base.

In general the loop space of a space A at a point a is defined as follows :

loopSpace : (A : Type) (a : A) → Type
loopSpace A a = a ≡ a

For now, we will treat the loop space of S¹ as the fundamental group.
Later we will understand why this is illegal in general
(the fundamental group is set truncated)
but legitimate in this special case
(the loop space of S¹ turns out to be a set anyway).

Exercise - loop_times

Clearly for each integer n : ℤ we have a path
that is “loop around n times”.
Locate loop_times in 1FundamentalGroup/Quest1.agda
(note how agda treats underscores)

loop_times : ℤ → loopSpace S¹ base
loop n times = {!!}

Note

You can use underscores when you name a function.
agda will put the inputs in the underscores in order.

Try casing on n, you should see

loop_times : ℤ → loopSpace S¹ base
loop pos n times = {!!}
loop negsuc n times = {!!}

It says to map out of ℤ it suffices to
map the non-negative integers (pos)
and the negative integers (negsuc).
The definition of ℤ in agda is

data ℤ : Type where
 pos : ℕ → ℤ
 negsuc : ℕ → ℤ

It says is ℤ is two copies of ℕ where the first
copy represents 0, 1, 2, ...,
and the second represents -1, -2, ...
(negsuc n is meant to mean - (n + 1)).
This definition of ℤ uses the naturals, so try
casing on n again, you should see

loop_times : ℤ → Ω S¹ base
loop pos zero times = {!!}
loop pos (suc n) times = {!!}
loop negsuc n times = {!!}

It says to map out of ℕ it suffices to map zero and
map each successive integer suc n inductively.
We can do the same with negsuc n,
obtaining four cases.

loop_times : ℤ → Ω S¹ base
loop pos zero times = {!!}
loop pos (suc n) times = {!!}
loop negsuc zero times = {!!}
loop negsuc (suc n) times = {!!}

These four cases represent :

	If you “loop 0 times” then you stay at base.

	If you “loop n + 1 times”, you “loop n times”
then “loop once more”.

	If you “loop -1 times”, you “loop once in reverse”

	If you “loop -(n + 2) times”, you loop “loop -(n + 1) times”
then “loop once more in reverse”

Individually

	Try filling the first hole with
what we get when we loop 0 (pos zero) times.

	For looping pos (suc n) times we loop n times and
loop once more.
For this we need composition of paths.

∙ : x ≡ y → y ≡ z → x ≡ z

Try typing _∙_ or ? ∙ ? in the hole (input \.)
and refining.
Checking the new holes you should see that now you need
to give two loops.

loop pos (suc n) times = {!!} ∙ {!!}

Try giving it “loop n times” concatenated with loop.

	To “loop in reverse” we use

sym : x ≡ y → y ≡ x

Use this to define “loop -1 times”.

	For the last case “concatenate loop -(n + 1) times with loop in reverse”.

Part 1 - Making a Path From ℤ to Itself

In the previous part we have defined the map loop_times : ℤ → Ω S¹ base.
Creating the inverse map is difficult without access to the entire circle.
Similarly to how we used doubleCover to distinguish refl
(Refl is now refl which is more general) from loop,
the idea is to replace Bool with ℤ,
allowing us to distinguish between all loops on S¹.
In this quest we will construct one of the two comparison maps
across the whole circle, called windingNumber.

The plan is :

	Define a function sucℤ : ℤ → ℤ that increases every integer by one

	Prove that sucℤ is an isomorphism by constructing
an inverse map predℤ : ℤ → ℤ.

	Turn the isomorphism sucℤ into a path
sucℤPath : ℤ ≡ ℤ using isoToPath

	Define helix : S¹ → Type by mapping base to ℤ and
a generic point loop i to sucℤPath i.

	Use helix and endPt to define the map
windingNumberBase : base ≡ base → ℤ.
Intuitively it counts how many times a path loops around S¹.
a generic point loop i to sucℤPath i.

	Generalize this across the circle.

In this part, we focus on 1, 2 and 3.

Defining sucℤ

	Set up the definition of sucℤ so that it is of the form :

Name : TypeOfSpace
Name inputs = ?

Just writing in the name and the type of the space is enough for now.
Load the file and check that it is looks like:

Solution:sucℤ : ℤ → ℤ
sucℤ = ?

	We will define sucℤ the same way we defined loop_times :
by induction.
Do cases on the input of sucℤ.
You should have something like :

Solution:sucℤ : ℤ → ℤ
sucℤ pos n = ?
sucℤ negsuc n = ?

	For the non-negative integers pos n we want to map to its successor.
Recall that the n here is a point of the naturals ℕ whose definition is :

data ℕ : Type where
 zero : ℕ
 suc : ℕ → ℕ

Use suc to map pos n to its successor.

	The negative integers require a bit more care.
Recall that annoyingly negsuc n means “- (n + 1)”.
We want to map - (n + 1) to - n.
Try doing this.
Then realise “you run out of negative integers at -(0 + 1)”
so you must do cases on n and treat the -(0 + 1) case separately.

HintDo C-c C-c on n.
Then map negsuc zero to pos zero.
For negsuc (suc n), map it to negsuc n.

	This completes the definition of sucℤ.
Use C-c C-n to check it computes correctly.
E.g. check that sucℤ (negsuc zero) computes to pos zero
and sucℤ (pos zero) computes to pos (suc zero).

sucℤ is an Isomorphism

	The goal is to define predℤ : ℤ → ℤ which
“takes n to its predecessor n - 1”.
This will act as the (homotopical) inverse of sucℤ.
Now that you have experience from defining sucℤ,
try defining predℤ.

	Imitating what we did with flipIso and
give a point sucℤIso : ℤ ≅ ℤ
by using predℤ as the inverse and proving
section sucℤ predℤ and retract sucℤ predℤ.

sucℤ is a Path

	Imitating what we did with flipPath,
upgrade sucℤIso to sucℤPath.

Part 2 - Winding Number

The ℤ-bundle helix

We want to make a ℤ-bundle over S¹ by
‘copying ℤ across the loop via sucℤPath’.
In Quest1.agda locate

helix : S¹ → Type
helix = {!!}

Try to imitate the definition of doubleCover to define the bundle helix.
You should compare your definition to ours in Quest1Solutions.agda.
Note that we have called this helix, since the picture of this ℤ-bundle
looks like

 Quest 2 - ℤ is a Set

Quest 2 - ℤ is a Set

An overview of this quest :

	We want to show that the higher loop spaces of S¹
are trivial

	We note that it suffices to show that the loop space of ℤ
is trivial, assuming the end result loopSpace S¹ base ≡ ℤ.

	Show that the loop space of any set is trivial,
hence it suffices to show that ℤ is a set

	Show that ℤ looks like the sum of two disjoint copies of ℕ,
and ℕ is a set;
it then suffices to show the general result that the disjoint sum of two
sets is a set.

	To show that the disjoint sum of sets is a set we find ourselves
trying to classify the path space of disjoint sums.

The bulk of the work will be to classify the path space of disjoint sums,
and showing that it actually corresponds to the path space.
This is the content of the last three parts.

Part 0 - loopSpace loopSpace

We are interested in knowing what
the higher homotopy groups of S¹ might be.
Whilst the data of the fundamental group π₁ S¹ is captured
in loopSpace S¹ base,
the data of π₂ S¹ would be captured in
loopSpace (loopSpace S¹ base) refl;
loops in loopSpace S¹ base based at refl.
Points in the second loop space are paths h : refl ≡ refl,
i.e. h would be a homotopy from the constant path to itself.

The second loop space contains an obvious point refl : refl ≡ refl
(this is of course not the same “refl” as the one before),
and we could define the next loop space to be loops in
loopSpace (loopSpace S¹ base) refl based at refl
(the one from loopSpace S¹ base that is).

The important conclusion we will arrive at in this quest is
that the loop space of ℤ - which will correspond to the
second loop space of S¹ (this is the conclusion of this entire arc) -
is trivial, in the sense that it just consists of a point (up to paths) :

loopSpace (loopSpace S¹ base) refl ≡ loopSpace ℤ 0 ≡ ⊤

Intuitively this is because the only loop (up to a path) in ℤ from
0 to itself is refl,
so loopSpace ℤ 0 is contractible -
it looks just like the singleton space ⊤.
This is more general : any two paths in ℤ are homotopic,
which we formalise in the definition isSet.

isSet

isSet

The statement “any two paths in the space A are homotopic”
is captured in the definition of isSet :

isSet : Type → Type
isSet A = (x y : A) → isProp (x ≡ y)

In the above isProp captures the statement
“any two points are (continuously) connected by a path” :

isProp : Type → Type
isProp A = (x y : A) → x ≡ y

If a type satisfies isSet we say it is a set,
and if it satisfies isProp we say it is a proposition.

Why the words "set" and "proposition"?Intuitively a “set” is meant to be a bunch of disjoint points.
However in homotopy type theory we consider points up to paths,
and paths up to homotopy,
hence a “set” is a bunch of disjoint blobs,
where each blob is contractible to a point.
In other words a “set” is a type where any circle
(that lands in a blob)
can be filled (hence the blob is contractible).

We will justify the use of the word “proposition” once
we have introduced the propositional perspective on types,
see trinitarianism and
Part 5 - Using the Propositional Perspective.

All maps are continuous in HoTTThere is a subtlety in the definition isProp.
Having isProp A is stronger than saying that the space A is path connected.
Since A is equipped with a continuous map taking pairs x y : A
to a path between them.

We will show in a later quest
that isProp S¹ is empty despite S¹ being path connected.

We can justify “the loop space of a set is trivial” by showing that
“if any two paths in a space A are homotopic then
the loop space of A at any point in A
looks like ⊤”.
So we show that

isSet→LoopSpace≡⊤ : {A : Type} (x : A) → isSet A → (x ≡ x) ≡ ⊤
isSet→LoopSpace≡⊤ = {!!}

Locate this in 1FundamentalGroup/Quest2.agda
and try filling it in.

Hint 0Imitating what we did with flipPath and flipIso
reduce this to showing that for each x : A and h : isSet A
we have

	fun : x ≡ x → ⊤

	inv : ⊤ → x ≡ x

	rightInv : section fun inv

	leftInv : retract inv fun

Hint 1There is only one possible map from x ≡ x to ⊤
since ⊤ is terminal (see trinitarianism).

To map out of ⊤ one can do cases and see that
you only need to map tt.

Solution
	fun can just be (λ p → tt)

	inv can be

inv : ⊤ → x ≡ x
inv tt = refl

Hint 2For rightInv by casing on the point in ⊤
there should be nothing much to show.

For leftInv we need to use our assumption
that “any two paths are homotopic”.

SolutionrightInv : section (λ p → tt) inv
rightInv tt = refl

leftInv : retract (λ p → tt) inv
leftInv p = h x x refl p

The goal

We have therefore reduced our goal to
showing that ℤ is a set,
i.e. ℤ only has trivial paths in it,
which will tell us that the second loop
(and in fact any higher loop space)
of S¹ is trivial.

Part 1 - ℤ as a disjoint sum ℕ ⊔ ℕ

As a first step, we note that ℤ actually looks like
two disjoint copies of ℕ, i.e. we have

ℤ≡ℕ⊔ℕ : ℤ ≡ ℕ ⊔ ℕ

where we have the definition of the disjoint sum of two spaces as follows

data _⊔_ (A B : Type) : Type where

 inl : A → A ⊔ B
 inr : B → A ⊔ B

It says there are two ways of making points in the space,
taking them from A and taking them from B.
Try proving ℤ ≡ ℕ ⊔ ℕ in 1FundamentalGroup/Quest2.agda.

HintAs in defining flipPath in quest 0
we first make an isomorphism and then convert it to a path/proof of equality.
To make the isomorphism note that
the definition of ℤ is already as “two copies of ℕ”,
as described in quest 1.

If you have made the function and inverse appropriately,
you should only need constant paths in the
proofs that they satisfy section and retract
respectively.

Solutionℤ≡ℕ⊔ℕ : ℤ ≡ ℕ ⊔ ℕ
ℤ≡ℕ⊔ℕ = isoToPath (iso fun inv rightInv leftInv) where

fun : ℤ → ℕ ⊔ ℕ
fun (pos n) = inl n
fun (negsuc n) = inr n

inv : ℕ ⊔ ℕ → ℤ
inv (inl n) = pos n
inv (inr n) = negsuc n

rightInv : section fun inv
rightInv (inl n) = refl
rightInv (inr n) = refl

leftInv : retract fun inv
leftInv (pos n) = refl
leftInv (negsuc n) = refl

We want to show that ℤ is a set,
by using the path ℤ≡ℕ⊔ℕ.
Intuitively if ℕ is a set then two disjoint
copies of it should also be a set,
(think about filling circles on the disjoint sum).
Thus we can break down our goal into two :

Goal 1 : ℕ is a set

isSetℕ : isSet ℕ
isSetℕ = {!!}

Goal 2

If A and B are both sets then A ⊔ B
is also a set.

Goal 1 will be handled in a side quest.
We focus on Goal 2 from now on.

Part 2 - Disjoint Sum of Sets is a Set

Try formulating (but not proving) the result isSet⊔,
which should say “if spaces A and B are both sets
then so is their disjoint sum A ⊔ B”.
This should be done in 1FundamentalGroup/Quest2.agda
where indicated.

SolutionisSet⊔ : {A B : Type} → isSet A → isSet B → isSet (A ⊔ B)
isSet⊔ = {!!}

Without proving this, we can use this to show isSet (ℕ ⊔ ℕ)
using isSetℕ : isSet ℕ,
which will be shown in a side quest.
Then using either pathToFun or endPt you can show
isSet ℤ from isSet (ℕ ⊔ ℕ),
using the path from ℤ to ℕ ⊔ ℕ we made earlier.
Try to set up everything described in this paragraph where indicated
in 1FundamentalGroup/Quest2.agda.

Hint : The statementisSetℤ : isSet ℤ

Hint : following along paths To use pathToFun you must figure out what path you are following
and what point you are following the path along.

To use endPt you must figure out what bundle you are making,
what the path in the base space is,
and what point you are starting at in the first fiber.

Partial solutionsThe point you need to follow in either case
is the point in the space isSet (ℕ ⊔ ℕ) :

isSetℤ : isSet ℤ
isSetℤ = pathToFun {!!} (isSet⊔ isSetℕ isSetℕ)

isSetℤ' : isSet ℤ
isSetℤ' = endPt {!!} {!!} (isSet⊔ isSetℕ isSetℕ)

SolutionsisSetℤ : isSet ℤ
isSetℤ = pathToFun (cong isSet (sym ℤ≡ℕ⊔ℕ)) (isSet⊔ isSetℕ isSetℕ)

isSetℤ' : isSet ℤ
isSetℤ' = endPt (λ A → isSet A) (sym ℤ≡ℕ⊔ℕ) (isSet⊔ isSetℕ isSetℕ)

Refining issuesIf you tried refining using endPt
you may have been given 2 holes instead of 3.
This is because agda had too many
possible options when trying to match up
the output of endPt and the goal.
To add an extra hole simply add a ?
afterwards and reload.

Once this is complete we can go back and work on isSet⊔.

Part 3 - Path Space of Disjoint Sums

Motivation

	Locate your formulation of isSet⊔.

	We assume hA : isSet A,
hB : isSet B, and points x y : A ⊔ B.
Currently our code looks like

isSet⊔ : {A B : Type} → isSet A → isSet B → isSet (A ⊔ B)
isSet⊔ hA hB x y = {!!}

	Check the goal.
It should be asking for a point in the space isProp (x ≡ y).

We need to consider how to get information on
the path space of A ⊔ B when our hypotheses are
about the path spaces of A and B respectively.
We could try to case on x and y.

	If x and y are “both from A”,
i.e. of the form inl ax and inl ay for ax ay : A,
then we need to find a point in isProp (inl ax ≡ inl ay).
This should be due to hA, which gives us
hA ax ay : isProp (ax ≡ ay).
So somehow we need to identify the path spaces
inl ax ≡ inl ay and ax ≡ ay
(try to formalize this,
though we are not expecting a solution here).

	If x and y are of the forms inl ax and inr by
respectively for ax : A and by : B then
intuitively the space inl ax ≡ inr bx should be empty,
since the sum is disjoint
(again we are not expecting a solution here).

	The other two cases are similar.

The conclusion is that we need some kind of
classification of the path space of disjoint sums.

Classifying the Path Space of Disjoint Sums

Path space of disjoint sums

A path in the the disjoint sum
should just be a path in one of the two parts.

This says points from A
cannot be confused with points from B
or points in A that they were not already path connected to.

For now we leave isSet⊔ alone and define a function ⊔NoConfusion
that takes two points in A ⊔ B and returns a space,
which is meant to represent the path space in each case,
as described in our motivation above.
Try to formulate (but not fill in) this where indicated in
Quest2.agda.
It should look like:

Solution⊔NoConfusion : {A B : Type} → A ⊔ B → A ⊔ B → Type
⊔NoConfusion = {!!}

Assume points x and y in the disjoint sum
and try to case on them.
There should be four cases.

	When both points are from A,
i.e. they are inl ax and inl ay,
then we should give the space ax ≡ ay,
which we expect to be isomorphic to inl ax ≡ inl ay.

	(Two cases) When each is from a different space we expect the path
space between them to be empty, so we should give ⊥.

	If both are from B then we should
imitate what we did in the first case

Solution⊔NoConfusion : A ⊔ B → A ⊔ B → Type
⊔NoConfusion (inl x) (inl y) = x ≡ y -- Path A x y
⊔NoConfusion (inl x) (inr y) = ⊥
⊔NoConfusion (inr x) (inl y) = ⊥
⊔NoConfusion (inr x) (inr y) = x ≡ y -- Path B x y

Using the Classification

Now we have two of goals :

	Path≡⊔NoConfusion :
We need to show that for each x y : A ⊔ B
the path space looks like our classification,
i.e. that (x ≡ y) ≡ (⊔NoConfusion x y)

	isSet⊔NoConfusion : For isSet⊔, given
hA : isSet A, hB : isSet B and x y : A ⊔ B
we needed to show isProp (x ≡ y).
Hence we want to show that under the same assumptions
isProp (⊔NoConfusion x y).

Formalise (but don’t prove) both of these where indicated in
1FundamentalGroup/Quest2.agda.
They should look like

SolutionsPath≡⊔NoConfusion : (x y : A ⊔ B) → (x ≡ y) ≡ ⊔NoConfusion x y
Path≡⊔NoConfusion = {!!}

isSet⊔NoConfusion : isSet A → isSet B → (x y : A ⊔ B) → isProp (⊔NoConfusion x y)
isSet⊔NoConfusion = {!!}

Tip

If you are tired of writing {A B : Type} → each time
you can stick

private
 variable
 A B : Type

at the beginning of your agda file,
and it will assume A and B implicitly
whenever they are mentioned.
Make sure it is indented correctly.

Without showing either of these new definitions,
try using them to complete isSet⊔.

HintWe can use pathToFun or endPt
to follow how a point of “isProp applied to ⊔NoConfusion”
changes into a point of “isProp on the path space x ≡ y”.

Partial solutionsisSet⊔ : {A B : Type} → isSet A → isSet B → isSet (A ⊔ B)
isSet⊔ hA hB x y = pathToFun {!!} (isSet⊔NoConfusion hA hB x y)

isSet⊔' : {A B : Type} → isSet A → isSet B → isSet (A ⊔ B)
isSet⊔' hA hB x y = endPt {!!} {!!} (isSet⊔NoConfusion hA hB x y)

SolutionsisSet⊔ : {A B : Type} → isSet A → isSet B → isSet (A ⊔ B)
isSet⊔ hA hB x y = pathToFun (cong isProp (sym (Path≡⊔NoConfusion x y)))
 (isSet⊔NoConfusion hA hB x y)

isSet⊔' : {A B : Type} → isSet A → isSet B → isSet (A ⊔ B)
isSet⊔' hA hB x y = endPt (λ A → isProp A) (sym (Path≡⊔NoConfusion x y))
 (isSet⊔NoConfusion hA hB x y)

Proving isSet⊔NoConfusion

We will now show that ⊔NoConfusion “is a set”.
Locate your definition of isSet⊔NoConfusion
and try proving it.

HintWe need to case on the points in A ⊔ B.

	If they are both “from A” then we need to show that
the path spaces in A are propositions.

	(2 cases) If they are from different spaces then we must show that
the path spaces in ⊥ are propositions.

	If they are both “from B” then it is similar to the first case.

Part 4 - Proving Path≡⊔NoConfusion

It suffices to make an isomorphism

Replicate our proof of flipPath in quest 0,
it suffices to show an isomorphism instead of an equality.
Make this precise in 1FundamentalGroup/Quest2.

SpoilerSo that you can follow, we will make a lemma
(you don’t have to) :

Path≅⊔NoConfusion : (x y : A ⊔ B) → (x ≡ y) ≅ ⊔NoConfusion x y
Path≅⊔NoConfusion = {!!}

To prove the isomorphism (for each arbitrary x and y) we need
four things, which we can extract as local definitions / lemmas using where.

Spoilerfun : (x y : A ⊔ B) → (x ≡ y) → ⊔NoConfusion x y
fun x y = {!!}

inv : (x y : A ⊔ B) → ⊔NoConfusion x y → x ≡ y
inv x y = {!!}

rightInv : (x y : A ⊔ B) → section (fun x y) (inv x y)
rightInv {A} {B} = {!!}

leftInv : (x y : A ⊔ B) → retract (fun x y) (inv x y)
leftInv = {!!}

inv

First try defining inv : (x y : A ⊔ B) → ⊔NoConfusion x y → x ≡ y.

Hint 0Check the goal.
You can assume points x y : A ⊔ B
and a point h : ⊔NoConfusion x y.
If you case on x and y
you might find there are fewer cases than you need.
This is because ⊔NoConfusion (inl ax) (inr by)
was defined to be empty, so agda automatically removes the case.

Hint 1In the case that both points are from x we need to show that
given a proof p : ax ≡ ay we get a proof of inl ax ≡ inr ay.
We already have the result that if two points are equal then
their images under a function are equal.

Solutioninv : (x y : A ⊔ B) → ⊔NoConfusion x y → x ≡ y
inv (inl x) (inl y) p = cong inl p
inv (inr x) (inr y) p = cong inr p

Attempting fun

We try to define the map forward, which we called fun.
If we assume and case on x and y in the disjoint sum then

	When x and y are both from A then
they will be inl ax and inl ay,
so checking the goal we should be required to give a point in
inl x ≡ inl y → x ≡ y.
Reading this carelessly one could call this “inl is injective”.

	When x and y are from different spaces then
checking the goal, we should be required to give a point in
inl ax ≡ inr by → ⊥.
This says there are no paths between the disjoint parts.

	The last case is similar to the first.

We can extract the second case as a lemma :

Spoilerdisjoint : (a : A) (b : B) → inl a ≡ inr b → ⊥
disjoint a b p = {!!}

which we can prove by constructing a subsingleton bundle
over A ⊔ B,
just like we did to prove that true ≡ false is empty,
in the side quest.
In fact this is a generalisation of that result,
and the proof also generalises.

HintWe make a bundle over the disjoint union
with the starting fiber as ⊤ and the
ending fiber as ⊥.

Solutiondisjoint : (a : A) (b : B) → inl a ≡ inr b → ⊥
disjoint a b p = endPt bundle p tt where

 bundle : A ⊔ B → Type
 bundle (inl a) = ⊤
 bundle (inr b) = ⊥

The other case is quite problematic.
This is what we want to show

inlInj : (x y : A) → (inl {A} {B} x ≡ inl y) → x ≡ y
inlInj x y p = {!!}

Here are the problems:

	If we had a map backwards that cancelled inl
we would be done, but in general this doesn’t
exist. For example, if A were empty
and B had a point then we cannot
expect to have a map A ⊔ B → A.

	There is nothing to induct on :
we have no information about x y : A.
More importantly :

Important

We don’t know how to induct on paths.

Specifically we don’t yet know how to map out of a path space
in general.

To find out how to induct on paths,
complete quest 4 in trinitarianism,
and return to this quest with a completely new perspective.

Part 5 - Using the Propositional Perspective

After learning about the propositional perspective on
equality, we can review some of the things
we showed in a new light :

	a ≡ b → ⊥ can be read as a is not equal to b
since assuming a proof that a is equal to b
we have a point in the empty space.

	In showing an isomorphism between spaces
we must show that two functions satisfy fun (inv x) ≡ x
for each x in the domain.
This can now be read as fun composed with inv
is equal to the identity on points.

	isoToPath says that if two spaces are isomorphic
then they are equal.

	endPt (subst for substitute in the library)
takes a bundle and a proof that x ≡ y in the base space
and substitutes x for y,
hence replacing a point in the fiber of x
with a point in the fiber of y.

	cong : (f : A → B) → (p : x ≡ y) → f x ≡ f y
says that if two points are equal then their images are equal.

	true is not equal to false

	refl is not equal to loop

	flipPath : Bool ≡ Bool is a non-trivial equality
between Bool and itself.

	inl is injective (we still have not shown this yet).

	The objective of this whole arc is to show that
the fundamental group of the circle is equal to ℤ.

	isProp says there is at most one point in the space;
at most one proof of the proposition.
Classically propositions are meant to only have a single proof
(“proof irrelevance”), because for propositions A and B,
having implications A → B and B → A is enough
to show A ≡ B.

	isSet says between any two points there is at most one path between them,
i.e. “there is only refl”, i.e. the space is disjoint.

We shall apply this perspective to the problem at hand.

fun

Now that we know how to induct on paths,
we need to pick a path to induct on.
Continuing with trying to show that inl is injective
we will notice that path induction does not actually work here,
since we have

	a start point ax : A

	a variable end point ay : A

	but the path is in the disjoint union inl ax ≡ inl ay
not a path in A

We instead take a step back and look at fun itself.
(You can now abandon inlInj if you like,
this will become a corollary of the classification.)
We also remove the cases so that we are back to just having

fun : (x y : A ⊔ B) → (x ≡ y) → ⊔NoConfusion x y
fun x y = {!!}

You might have noticed by now that we are in the perfect position to
induct on paths in x ≡ y.
Path induction - J - says that to make
a function (x y : A ⊔ B) → (x ≡ y) → ⊔NoConfusion x y,
it suffices just to give a point in ⊔NoConfusion x x.
Formalise the above
(without showing ⊔NoConfusion x x yet) :

Spoilerfun : (x y : A ⊔ B) → (x ≡ y) → ⊔NoConfusion x y
fun x y = J (λ y' p → ⊔NoConfusion x y') {!!}

To prove ⊔NoConfusion x x it would be convenient to be able to case on x
so we will extract it as a lemma.
Once you extract and case on x this it should be quite easy to show.

Spoiler⊔NoConfusionSelf : (x : A ⊔ B) → ⊔NoConfusion x x
⊔NoConfusionSelf (inl x) = refl
⊔NoConfusionSelf (inr x) = refl

rightInv

Try to define
rightInv : (x y : A ⊔ B) → section (fun x y) (inv x y).

Hint 0It is a good idea to case on x and y in the space A ⊔ B,
since inv is the first to take these inputs in here,
and inv was defined by casing on x and y.
This should reduce us to just two cases,
like when defining inv.
We will just describe the case when they are both from A.

Hint 1We can use J to reduce to the case of when the path is refl.
(No proof of the refl case yet.)

SolutionrightInv : (x y : A ⊔ B) → section (fun x y) (inv x y)
rightInv {A} {B} (inl x) (inl y) p =
 J (λ y' p → fun {A} {B} (inl x) (inl y') (inv (inl x) (inl y') p) ≡ p) {!!}

We added the implicit arguments {A} and {B} so we can actually access them here.
The remaining hole is for showing that

fun (inl x) (inl x) (inv (inl x) (inl x) refl) ≡ refl

Hint 2It would help to make a chain of equalities.
We defined inv (inl x) (inl x) refl to be refl,
so we only need to show that

fun (inl x) (inl x) refl ≡ refl

Since fun was defined using J we need to know how
J computes when it is fed refl.
We described this before, it is called JRefl.

SolutionrightInv : (x y : A ⊔ B) → section (fun x y) (inv x y)
rightInv {A} {B} (inl x) (inl y) p = J (λ y' p → fun {A} {B} (inl x) (inl y') (inv (inl x) (inl y') p) ≡ p)
 (
 fun {A} {B} (inl x) (inl x) refl
 ≡⟨ JRefl {x = inl x} ((λ y' p → ⊔NoConfusion {A} {B} (inl x) y')) _ ⟩
 -- uses how J computes on refl
 refl ∎
) p
rightInv {A} {B} (inr x) (inr y) p = {!!}

leftInv

Try to define leftInv.

Hint 0We do this but each part of this proof will be relevant anywayuse J since fun “happens first”.
This should reduce the problem to showing

inv x x (fun x x refl) ≡ refl

SolutionleftInv : (x y : A ⊔ B) → retract (fun x y) (inv x y)
leftInv x y = J (λ y' p → inv x y' (fun x y' p) ≡ p) {!!}

Hint 1If you extract what is needed as a lemma
you can case on the variable.
Remember to use JRefl for the application of fun.

SolutionleftInv : (x y : A ⊔ B) → retract (fun x y) (inv x y)
leftInv x y = J (λ y' p → inv x y' (fun x y' p) ≡ p)
 (
 (inv x x (fun x x refl))
 ≡⟨ cong (inv x x) (JRefl ((λ y' p → ⊔NoConfusion x y')) _) ⟩
 inv x x (⊔NoConfusionSelf x)
 ≡⟨ lem x ⟩
 refl ∎
) where

 lem : (x : A ⊔ B) → inv x x (⊔NoConfusionSelf x) ≡ refl
 lem (inl x) = refl
 lem (inr x) = refl

Footnotes

 Quest 3 - The Loop Space is ℤ

Quest 3 - The Loop Space is ℤ

In Quest 1 - Loop Space of the Circle we introduced our main
method of proving that the fundamental group
(which we take to be loopSpace S¹ base for now)
is ℤ,
and in Quest 2 - ℤ is a Set we decided that this
means to show that they are equal spaces.
.. admonition:: The Goal

loopSpace≡ℤ : loopSpace S¹ base ≡ ℤ
loopSpace≡Z = {!!}

As usual we will show this via giving an isomorphism,
so we must make comparison maps forward and back.
However, we discovered we had to define the backwards map
over all of S¹.
We already have windingNumber, the forwards comparison map,
which gives us a map loopSpace S¹ base → ℤ when applied to base.

windingNumber : (x : S¹) → base ≡ x → helix x

In this quest our goal is to make a map backwards

Current Goal

rewind : (x : S¹) → helix x → base ≡ x

Since windingNumber took a path and found how
many times the path loops around, in general “an integer twisted around the helix a bit”,
or “an integer plus a bit”.
We want to make rewind do the reverse.
So rewind should take “an integer n plus a bit”,
loop around n times, then add that extra corresponding bit,
the path from base to x to the end.

Part 0 - rewind

Dependent paths

We try making rewind.
We can assume a point x : S¹,
then case on what it is.

rewind : (x : S¹) → helix x → base ≡ x
rewind base = {!!}
rewind (loop i) = {!!}

In the case of base we want a map
from helix base i.e. ℤ, to base ≡ base.
Try filling this in.

SolutionWe want this to be the correct inverse,
described as looping around n times and adding that extra bit on the end.
However there is nothing to add at the end in this case,
so it should just be loop_times,
which we already defined in Quest 1 - Loop Space of the Circle.

The case of loop i will be a lot more work.
Checking the goal we see that at each point loop i
on the loop, it wants a point in the space
helix (loop i) → base ≡ (loop i),
which it might reduce to sucℤPath i → base ≡ (loop i)
according to the definition of helix.

Collecting these spaces together along this i,
we obtain a loop in the space of spaces based at the space ℤ → base ≡ base
given by

λ i → helix (loop i) → base ≡ (loop i) : (ℤ → base ≡ base) ≡ (ℤ → base ≡ base).

Now collecting the points we need to give into a “path” as well,
we obtain the notion of a dependent path :
each point of this “path” belongs to a space along the path of spaces.
We define dependent paths and design a way of mapping out of
S¹ in general in Quest 5 - Dependent Paths from Trinitarianism.
We assume from now on knowledge of dependent paths.

Using outOfS¹

Now that we have a way of mapping out of S¹ (using PathD),
called outOfS¹D,
try to use it to repackage the work we have to far.

SolutionOriginally we have

rewind : (x : S¹) → helix x → base ≡ x
rewind base = loop_times
rewind (loop i) = {!!}

Now we rearrange this to

rewind : (x : S¹) → helix x → base ≡ x
rewind = outOfS¹D (λ x → helix x → base ≡ x) loop_times {!!}

since our bundle over S¹ is (λ x → helix x → base ≡ x)
and our image for base is loop_times.

Checking the last goal, it remains to give a dependent path of type
PathD (λ i → sucℤPath i → base ≡ loop i) loop_times loop_times.
Remembering the definition of PathD,
this should be exactly giving a path
pathToFun (λ i → sucℤPath i → base ≡ loop i) loop_times ≡ loop_times,
since PathD reduces the issue of dependent paths to just paths in
the end space, which is ℤ → base ≡ base in this case.
Let’s make this a chain of equalities :

Solutionrewind : (x : S¹) → helix x → base ≡ x
rewind = outOfS¹D (λ x → helix x → base ≡ x) loop_times
 (
 pathToFun (λ i → sucℤPath i → base ≡ loop i) loop_times
 ≡⟨ {!!} ⟩
 loop_times ∎
)

Functions and pathToFun

The map loop_times takes an integer and
does loop that many times.
On the other hand pathToFun follows how loop_times
changed along the path of spaces λ i → sucℤPath i → base ≡ loop i,
and spits out the corresponding point at the end.
This path of spaces is specifically a path of function spaces,
so we need to find a more explicit way of describing what pathToFun
does to spaces of functions.

To generalize, suppose we have spaces A0 A1 B0 B1 : Type
and paths A : A0 ≡ A1 and B : B0 ≡ B1.
Then let pAB denote the path
λ i → A i → B i : (A0 → B0) ≡ (A1 → B1).
We want to figure out what pathToFun
does when it follows a function f : A0 → B0 along the path pAB.

We know by functional extensionality that the function
pathToFun pAB f : A1 → B1
should be determined by what it does to terms in A1,
so we can assume a1 : A1.
The idea is we “apply f by sending a1 back to A0”.
Since pathToFun (sym A) a1 is meant to give the point in A0
that “looks like a1”, we try applying f to this point,
then send it across again via the path B to the point
f (pathToFun (sym A) a1) looks like in B1.
We expect the outcome to be the same.

pathToFun→ : {A0 A1 B0 B1 : Type} {A : A0 ≡ A1} {B : B0 ≡ B1} (f : A0 → B0) →
 pathToFun (λ i → A i → B i) f ≡ λ a1 → pathToFun B (f (pathToFun (sym A) a1))

[image: pathToFunAndPiTypes]
The proof of this in cubical agda is simply refl,
so we need not even extract it as a lemma.

A cubical hack

Is actually one of the axioms asserted in cubical agda
that pathToFun (λ i → A i → B i) f is externally equal to
λ a1 → pathToFun B (f (pathToFun (sym A) a1)).
Here we are using the cubical definition of pathToFun
so we can simply give refl for its proof.

However, according the definition of pathToFun we gave
in Trinitarianism, they are not externally equal
but can be shown to be internally equal using J.
We prove this from our own definitions
here.

We interpret what this result means in our specific case :
We are making pathToFun (λ i → sucℤPath i → base ≡ loop i) loop_times
into another map in the space ℤ → base ≡ base,
by following along the diagram

[image: pathToFunAndPiTypes2]
Specifically, this map should take n : ℤ and first send it backwards along
sucℤPath, supposedly giving us n - 1.
Then it applies loop_times, obtaining the loop loop (n - 1) times.
Lastly it follows loop (n - 1) times along the path λ i → base ≡ loop i
(which itself is a loop starting and ending at base ≡ base in the space of spaces),
obtaining some path from base ≡ base, which we expect to be internally
equal to loop n times.

Try putting this together in our definition of rewind,
as a new intermediate step in our chain of equalities.

Solutionrewind : (x : S¹) → helix x → base ≡ x
rewind = outOfS¹D (λ x → helix x → base ≡ x) loop_times
 (
 pathToFun (λ i → sucℤPath i → base ≡ loop i) loop_times
 ≡⟨ refl ⟩
 (λ n → pathToFun (λ i → base ≡ loop i) (loop_times (pathToFun (sym sucℤPath) n)))
 ≡⟨ {!!} ⟩
 loop_times ∎
)

We can simplify the above expression.
We know that pathToFun (sym sucℤPath) n should follow n
along sucℤPath backwards, so it should be n - 1.
We can use this to move a step closer to the goal.

SolutionThis equality is definitional.

rewind : (x : S¹) → helix x → base ≡ x
rewind = outOfS¹D (λ x → helix x → base ≡ x) loop_times
 (
 pathToFun (λ i → sucℤPath i → base ≡ loop i) loop_times
 ≡⟨ refl ⟩
 (λ n → pathToFun (λ i → base ≡ loop i) (loop_times (pathToFun (sym sucℤPath) n)))
 ≡⟨ refl ⟩
 (λ n → pathToFun (λ i → base ≡ loop i) (loop (predℤ n) times))
 ≡⟨ {!!} ⟩
 loop_times ∎
)

The path fibration and pathToFun

It remains to find out how pathToFun interacts with the path of loops coming out of base.
We call “the path of loops coming out of base” λ i → base ≡ loop i the path fibration
at base.
The animation tells us that we are gradually concatenating the input loop (n - 1) times
with loop.
Hence we should obtain loop (n - 1) times ∙ loop.
We are a bit lucky here, and these are in fact definitionally equal,
but to justify this in general, we can prove that
“following along the path fibration is the same as concatenating”.

pathToFunPathFibration : {A : Type} {x y z : A} (q : x ≡ y) (p : y ≡ z) →
 pathToFun (λ i → x ≡ p i) q ≡ q ∙ p

This is in fact a quick exercise.

HintWe take the propositional perspective -
without loss of generality we can assume
y and z are exactly the same.

Crucially : we know what pathToFun does to refl
(recall pathToFunRefl from the quest on paths).

SolutionpathToFunPathFibration : {A : Type} {x y z : A} (q : x ≡ y) (p : y ≡ z) →
 pathToFun (λ i → x ≡ p i) q ≡ q ∙ p
pathToFunPathFibration {A} {x} {y} q = J (λ z p → pathToFun (λ i → x ≡ p i) q ≡ q ∙ p)
 (
 pathToFun refl q
 ≡⟨ pathToFunRefl q ⟩
 q
 ≡⟨ ∙Refl q ⟩
 q ∙ refl ∎
)

To include this in rewind we have

Spoilerrewind : (x : S¹) → helix x → base ≡ x
rewind = outOfS¹D (λ x → helix x → base ≡ x) loop_times
 (
 pathToFun (λ i → sucℤPath i → base ≡ loop i) loop_times
 ≡⟨ refl ⟩ -- how pathToFun interacts with →
 (λ n → pathToFun (λ i → base ≡ loop i) (loop_times (pathToFun (sym sucℤPath) n)))
 ≡⟨ refl ⟩ -- sucℤPath is just taking successor, and so its inverse is definitionally taking predecessor
 (λ n → pathToFun (λ i → base ≡ loop i) (loop_times (predℤ n)))
 ≡⟨ funExt (λ n → pathToFunPathFibration _ _) ⟩ -- how pathToFun interacts with the "path fibration"
 (λ n → (loop (predℤ n) times) ∙ loop)
 ≡⟨ {!!} ⟩
 loop_times ∎
)

There are several ways to complete this final part.
We will leave the rest in a hint.

HintApplying functional extensionality we just need to show that for each n : ℤ
the outputs are equal, i.e. loop predℤ n times ∙ loop ≡ loop n times.
By our design of loop_times we should have that
loop m times ∙ loop is equal to loop (m + 1) times.
Then we are reduced to showing that loop (sucℤ predℤ n) times ≡ loop n times,
or just sucℤ predℤ n ≡ n.

Solutionrewind : (x : S¹) → helix x → base ≡ x
rewind = outOfS¹D (λ x → helix x → base ≡ x) loop_times
 (
 pathToFun (λ i → sucℤPath i → base ≡ loop i) loop_times
 ≡⟨ refl ⟩ -- how pathToFun interacts with →
 (λ n → pathToFun (λ i → base ≡ loop i) (loop_times (pathToFun (sym sucℤPath) n)))
 ≡⟨ refl ⟩ -- sucℤPath is just taking successor, and so its inverse is definitionally taking predecessor
 (λ n → pathToFun (λ i → base ≡ loop i) (loop_times (predℤ n)))
 ≡⟨ funExt (λ n → pathToFunPathFibration _ _) ⟩ -- how pathToFun interacts with the "path fibration"
 (λ n → (loop (predℤ n) times) ∙ loop)
 ≡⟨ funExt (λ n →
 loop predℤ n times ∙ loop
 ≡⟨ loopSucℤtimes (predℤ n) ⟩
 loop (sucℤ (predℤ n)) times
 ≡⟨ cong loop_times (sucℤPredℤ n) ⟩
 loop n times ∎) ⟩
 loop_times ∎
)

We can check that rewind base is indeed loop_times
by using C-c C-n.
This is to be expected as outOfS¹ evaluated at base
should back exactly what we fed it,
as mentioned in the discussion on mapping out of the circle.

Part 1 - rewind is a right inverse

We are now in a position to approach the main goal :

loopSpaceS¹≡ℤ : loopSpace S¹ base ≡ ℤ
loopSpaceS¹≡ℤ = {!!}

We have reduced this to giving an isomorphism,
which involves giving the map windingNumber base forward
and loop_times backwards,
and showing that they are inverses of each other.

Hence the next step is to show that
“looping n times then taking the winding number gives back n”.
Try to state and prove this in 1FundamentalGroup/Quest3.agda.
In the hints we will use intuitive notation for integers
that may not align exactly with agda code.

The statementwindingNumberRewindBase : (n : ℤ) → windingNumber base (rewind base n) ≡ n
windingNumberRewindBase = {!!}

We identify rewind base with loop_times,
since they are externally equal.

Hint 0Since loop_times was defined by casing on n we case on n -
it could be zero, a positive integer, negative one, or less than negative one.

Hint 1Some of the cases are trivial -
we know exactly what loop 0 times
and windingNumber base loop are.

Solution for Hint 1windingNumberRewindBase : (n : ℤ) → windingNumber base (rewind base n) ≡ n
windingNumberRewindBase (pos zero) = refl
windingNumberRewindBase (pos (suc n)) = {!!}
windingNumberRewindBase (negsuc zero) = refl
windingNumberRewindBase (negsuc (suc n)) = {!!}

Hint 2We can identify windingNumber base with its definition,
reducing the problem to showing that
endPt helix (loop n times) 0 is equal to n,
in the separate cases.

For the first case,
we can reduce loop (n + 1) times to just loop n times ∙ loop
since that was the definition.
Hence we are interested in what endPt helix (loop n times ∙ loop) 0 is.
Recalling our intuition behind endPt,
this amounts to following the point 0 up the helix along the path
loop n times ∙ loop.
This should just be going to endPt helix (loop n times) 0 then adding 1.

You can also check what agda reduces the expression to by writing it in the hole and
then doing C-c C-n.
It should look something like sucℤ (transp (λ i → helix (loop pos n times i)) i0 (pos 0)).
Clearly it has reduced the definition a bit too far,
but the important idea is there, that it is + 1 of whatever data we have already.

Lastly we can just take sucℤ on both sides of an equality we have from the induction hypothesis.

SolutionFor one of the cases we detail the
thought process going on above,
and for the last case we extract only the important part of the proof.

windingNumberRewindBase : (n : ℤ) → windingNumber base (rewind base n) ≡ n
windingNumberRewindBase (pos zero) = refl
windingNumberRewindBase (pos (suc n)) =
 windingNumber base (rewind base (pos (suc n)))
 ≡⟨ refl ⟩
 windingNumber base (loop (pos n) times ∙ loop)
 ≡⟨ refl ⟩
 endPt helix (loop (pos n) times ∙ loop) (pos zero)
 ≡⟨ refl ⟩
 sucℤ (endPt helix (loop (pos n) times) (pos zero))
 ≡⟨ cong sucℤ (windingNumberRewindBase (pos n)) ⟩
 sucℤ (pos n)
 ≡⟨ refl ⟩
 pos (suc n) ∎
windingNumberRewindBase (negsuc zero) = refl
windingNumberRewindBase (negsuc (suc n)) = cong predℤ (windingNumberRewindBase (negsuc n))

You might wonder if it is possible to make the above map work across all of S¹,
and the answer is yes.
This is not really necessary for our goal,
so feel free to skip to the next part if you are not interested.
Try stating and proving the generalization of the above;
which we call windingNumberRewind.

The StatementwindingNumberRewind : (x : S¹) (n : helix x) → windingNumber x (rewind x n) ≡ n
windingNumberRewind = {!!}

Hint 0We defined rewind by casing on points in the circle
and rewind is the first function being applied,
so it would make sense to case on points in the circle.
In the case when the point is base we can just give
the map we wanted to generalize in the first place.

Solution to Hint 0windingNumberRewind : (x : S¹) (n : helix x) → windingNumber x (rewind x n) ≡ n
windingNumberRewind =
 outOfS¹D (λ x → (n : helix x) → windingNumber x (rewind x n) ≡ n)
 windingNumberRewindBase {!!}

Hint 1Checking the last hole we see that we need to give a dependent path from
windingNumberRewindBase to itself.
According to the definition of a dependent path,
this is just a path in the last fiber from pathToFun of windingNumberRewindBase
to windingNumberRewindBase
(the fiber is (n : ℤ) → windingNumber base (rewind base n) ≡ n).
Now this might seem very complicated :
even after applying functional extensionality (this is equality of two functions)
this would be “finding a path between paths in ℤ”.
Try repeating that last bit in your head a couple of times.

Hint 2We put a lot of effort into showing that ℤ is a set.

SolutionwindingNumberRewind : (x : S¹) (n : helix x) → windingNumber x (rewind x n) ≡ n
windingNumberRewind = -- must case on x / use recursor / outOfS¹ since that is def of rewind
 outOfS¹D (λ x → (n : helix x) → windingNumber x (rewind x n) ≡ n)
 windingNumberRewindBase (
 pathToFun
 (λ i → (n : helix (loop i)) → windingNumber (loop i) (rewind (loop i) n) ≡ n)
 windingNumberRewindBase
 ≡⟨ funExt (λ x → isSetℤ _ _ _ _) ⟩
 windingNumberRewindBase ∎)

Part 2 - rewind is a left inverse

Try to show that rewind is a left inverse.

The StatementJust like we struggled to only define windingNumber base
without access to the entire circle,
we make sure to include all the data we have access to.
Note that this was not the case before.

rewindWindingNumber : (x : S¹) (p : base ≡ x) → rewind x (windingNumber x p) ≡ p
rewindWindingNumber x = {!!}

Hint 0Remembering that windingNumber x p is externally equal to endPt helix p 0,
and that endPt is defined by path induction - using J
(this is not exactly true for endPt from the library for cubical reasons),
the obvious thing to do here is to do path induction.

Solution for Hint 0rewindWindingNumber : (x : S¹) (p : base ≡ x) → rewind x (windingNumber x p) ≡ p
rewindWindingNumber x = J (λ x p → rewind x (windingNumber x p) ≡ p) {!!}

Hint 1It suffices to show that rewind x (windingNumber x refl) ≡ refl,
which by reducing the left side is the same as showing
loop_times (endPt helix refl 0) ≡ refl.

Solution to Hint 1rewindWindingNumber : (x : S¹) (p : base ≡ x) → rewind x (windingNumber x p) ≡ p
rewindWindingNumber x = J (λ x p → rewind x (windingNumber x p) ≡ p)
 (rewind base (windingNumber base refl)
 ≡⟨ refl ⟩
 loop_times (endPt helix (refl {x = base}) (pos zero))
 ≡⟨ {!!} ⟩
 refl ∎)

Hint 2We know what endPt does to refl, which is given by the result endPtRefl.
If you need to recall what endPtRefl proves you can type it into the hole
and do C-c C-. for the goal and the type of endPtRefl.

Solution to Hint 2rewindWindingNumber : (x : S¹) (p : base ≡ x) → rewind x (windingNumber x p) ≡ p
rewindWindingNumber x = J (λ x p → rewind x (windingNumber x p) ≡ p)
 (rewind base (windingNumber base refl)
 ≡⟨ refl ⟩
 loop_times (endPt helix (refl {x = base}) (pos zero))
 ≡⟨ cong loop_times (cong (λ g → g (pos zero)) (endPtRefl {x = base} helix)) ⟩
 loop (pos zero) times
 ≡⟨ {!!} ⟩
 refl ∎)

SolutionThe last step is simply remembering how loop_times computes.

rewindWindingNumber : (x : S¹) (p : base ≡ x) → rewind x (windingNumber x p) ≡ p
rewindWindingNumber x = J (λ x p → rewind x (windingNumber x p) ≡ p)
 (rewind base (windingNumber base refl)
 ≡⟨ refl ⟩
 loop_times (endPt helix (refl {x = base}) (pos zero)) -- reduce both definitions
 ≡⟨ cong loop_times (cong (λ g → g (pos zero)) (endPtRefl {x = base} helix)) ⟩
 loop (pos zero) times
 ≡⟨ refl ⟩
 refl ∎)

Part 3 - The Loop Space is ℤ

We can conclude our main goal now, by collecting all of the components we have made above.
We leave you the pleasure.

SolutionAs usual we construct an isomorphism,
but we can choose to do this over the entire circle
or just between loopSpace S¹ base and ℤ.
We do the former and have the latter as a corollary,
but you could just do the latter directly as well.

pathFibration≡helix : (x : S¹) → (base ≡ x) ≡ helix x
pathFibration≡helix x =
 isoToPath (iso (windingNumber x) (rewind x) (windingNumberRewind x) (rewindWindingNumber x))

loopSpaceS¹≡ℤ : loopSpace S¹ base ≡ ℤ
loopSpaceS¹≡ℤ = pathFibration≡helix base

What now?

We have mentioned already that we aren’t exactly working with the fundamental group,
but the loop space.
In the final quest of this arc we discuss the definition of the fundamental group and
show that the loop space in this case is the fundamental group already.

Footnotes

 Index

Index

 <no title>

 Footnotes

 Quest 3 - Side Quests

Quest 3 - Side Quests

Under construction

isSetℕ

Footnotes

 Quest 4 - The Fundamental Group

Quest 4 - The Fundamental Group

Work in progress.

Footnotes

nav.xhtml

 Table of Contents

 		
 The HoTT Game

 		
 Getting Started

 		
 The HoTT Game

 		
 Agdapad

 		
 Installing Agda and the Cubical Agda library

 		
 Where to start?

 		
 How to start?

 		
 Emacs issues

 		
 Special thanks

 		
 Installation

 		
 Overview

 		
 Installing agda

 		
 Installing doom emacs

 		
 Getting agda2-mode or agda-mode support for your text editor

 		
 Check the agda and agda-mode installations

 		
 Getting the cubical library

 		
 Getting The HoTT Game

 		
 Installing with Nix

 		
 Emacs and Unicode Commands

 		
 Agdapad

 		
 Notation

 		
 General Doom Emacs usage

 		
 Agda usage

 		
 Unicode commands

 		
 Getting Git on MacOS

 		
 Check the version

 		
 Get the right version

 		
 Trinitarianism

 		
 Overview

 		
 Terms and Types

 		
 Non-dependent Types

 		
 Dependent Types

 		
 What is ‘the Same’?

 		
 Quest 0 - Terms and Types

 		
 Part 0 - True / Unit / Terminal object

 		
 Part 1 - False / Empty / Initial object

 		
 Part 2 - The natural numbers

 		
 Part 3 - Universes

 		
 Quest 1 - Dependent Types

 		
 Part 0 - Predicates / Dependent Constructions / Bundles

 		
 Part 1 - Interpretations of Bundles

 		
 Part 2 - Using the Trinitarianism

 		
 Quest 2 - Sigma Types

 		
 Part 0 - Existence / Dependent Pair / Total Space of Bundles

 		
 Part 1 - Making terms in Sigma Types

 		
 Part 2 - Using Terms in Sigma Types

 		
 Quest 2 - Side Quests

 		
 A Tautology / Currying / Cartesian Closed

 		
 Quest 3 - Pi Types

 		
 Part 0 - Defining Addition

 		
 Part 1 - The Statement

 		
 Part 2 - Remarks

 		
 Quest 3 - Side Quests

 		
 Decidability of isEven

 		
 Quest 4 - Paths and Equality

 		
 Part 0 - The Identity Type

 		
 Part 1 - The Path Space

 		
 Part 2 - Properties of the Path Space

 		
 Part 3 - Univalence

 		
 Quest 4 - Side Quests

 		
 Functional Extensionality

 		
 Justifying J

 		
 Quest 5 - Dependent Paths

 		
 Part 0 - A motivating example

 		
 Part 1 - Dependent Paths

 		
 Part 2 - How pathToFun Interacts with Other Types

 		
 Fundamental Group of the Circle

 		
 Overview

 		
 Quest 0 - Working with the Circle

 		
 Part 0 - The Circle

 		
 Part 1 - Refl ≡ loop is empty

 		
 Part 2 - Defining flipPath via Univalence

 		
 Part 3 - Lifting paths using doubleCover

 		
 Quest 0 - Side Quests

 		
 Different notions of “empty”

 		
 Proving true≢false

 		
 Defining cong

 		
 Quest 1 - Loop Space of the Circle

 		
 Part 0 - Definition of the Loop Space

 		
 Part 1 - Making a Path From ℤ to Itself

 		
 Part 2 - Winding Number

 		
 Quest 2 - ℤ is a Set

 		
 Part 0 - loopSpace loopSpace

 		
 Part 1 - ℤ as a disjoint sum ℕ ⊔ ℕ

 		
 Part 2 - Disjoint Sum of Sets is a Set

 		
 Part 3 - Path Space of Disjoint Sums

 		
 Part 4 - Proving Path≡⊔NoConfusion

 		
 Part 5 - Using the Propositional Perspective

 		
 Quest 3 - The Loop Space is ℤ

 		
 Part 0 - rewind

 		
 Part 1 - rewind is a right inverse

 		
 Part 2 - rewind is a left inverse

 		
 Part 3 - The Loop Space is ℤ

_images/S1-final.gif
foop i

_images/doubleCover-final.gif
Fli.PPﬂd\- i

_images/idType.png
z +— (z, z, refl)

A —mm Z(x,y):AxA Id(m’ y)

(z,9,p) = (z,9)
diagonal

Ax A

_images/isEven.png

_images/generalBundle.png

_images/idRec.png
z — (z,z,rfl)

A >y rfl— > 1d

\ f
frfl -

M

_images/isEvenBundle.png
0, 4riviel

2, Ariviel

4, eivisl

_images/lifted_homotopy.png
liéted
homotrpy

Bool

false

S

base

sttt end

true _N)_{-use
|vo|)

_images/lifted_loops.p